【JZOJ 4866】 【NOIP2016提高组集训】禅与园林艺术

Description

上了大学之后,小W和小Z一起报了一门水课,在做作业时遇到了问题。
有一个长度为 n 的数列{ai},为一列树木的美观值。
现在有m 次询问,每次给出三个数l,r和P,
询问对于所有的l <= l’ <= r’ <= r
(a[l’] + a[l’ + 1] + … + a[r’]) mod P的最小值。
1 <= n, m <= 50000, 1 <= l <= r <= n, 1 <= P <= 100, 0 <= a[i] <= 10^9

Analysis

模型很新(我孤陋寡闻),是一道好题。
暴力很简单,只需预处理前缀和,O(mn^2)
由于它是求mod p后的最小值,所以答案不会超过p
注意到前缀可能的取值也不会超过p(mod p),根据抽屉原理,p+1个前缀中必定有两个前缀mod p相等。所以如果r-l+1>p,答案为0
那就好办了,时间复杂度变为O(mp^2),数据弱可以碾过去了。
事实上可以用链表优化到O(mp)

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int N=50010,P=110;
int n,m,a[N];
ll sum[N];
bool bz[P];
int main()
{
    freopen("garden.in","r",stdin);
    freopen("garden.out","w",stdout);
    int l,r,p;
    scanf("%d %d",&n,&m);
    fo(i,1,n) scanf("%d",&a[i]),sum[i]=sum[i-1]+a[i];
    fo(i,1,m)
    {
        scanf("%d %d %d",&l,&r,&p);
        if(r-l+1>p)
        {
            printf("0\n");
            continue;
        }
        int ans=P;
        fo(i,l,r)
            fo(j,i,r)
            {
                int t=(sum[j]-sum[i-1])%p;
                ans=min(ans,t);
            }
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值