Description
上了大学之后,小W和小Z一起报了一门水课,在做作业时遇到了问题。
有一个长度为 n 的数列{ai},为一列树木的美观值。
现在有m 次询问,每次给出三个数l,r和P,
询问对于所有的l <= l’ <= r’ <= r
(a[l’] + a[l’ + 1] + … + a[r’]) mod P的最小值。
1 <= n, m <= 50000, 1 <= l <= r <= n, 1 <= P <= 100, 0 <= a[i] <= 10^9
Analysis
模型很新(我孤陋寡闻),是一道好题。
暴力很简单,只需预处理前缀和,O(mn^2)
由于它是求mod p后的最小值,所以答案不会超过p
注意到前缀可能的取值也不会超过p(mod p),根据抽屉原理,p+1个前缀中必定有两个前缀mod p相等。所以如果r-l+1>p,答案为0
那就好办了,时间复杂度变为O(mp^2),数据弱可以碾过去了。
事实上可以用链表优化到O(mp)
Code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int N=50010,P=110;
int n,m,a[N];
ll sum[N];
bool bz[P];
int main()
{
freopen("garden.in","r",stdin);
freopen("garden.out","w",stdout);
int l,r,p;
scanf("%d %d",&n,&m);
fo(i,1,n) scanf("%d",&a[i]),sum[i]=sum[i-1]+a[i];
fo(i,1,m)
{
scanf("%d %d %d",&l,&r,&p);
if(r-l+1>p)
{
printf("0\n");
continue;
}
int ans=P;
fo(i,l,r)
fo(j,i,r)
{
int t=(sum[j]-sum[i-1])%p;
ans=min(ans,t);
}
printf("%d\n",ans);
}
return 0;
}