基于Iris鸢尾花数据集,完成k-近邻方法的实验,随机选取其中的2/3作训练集,其余作测试集,计算分类准确率。

基于Iris鸢尾花数据集,完成k-近邻方法的实验,随机选取其中的2/3作训练集,其余作测试集,计算分类准确率。这样的工作做10次(随机选数据10次,进行分类),计算出每次的准确率和平均准确率。

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
鸢尾花数据集:链接: https://pan.baidu.com/s/1XtrSq52xf3LfPQWKy8uokA 提取码: 6ri8

import numpy as np
from csv import reader
import pandas as pd
import matplotlib.pyplot as plt
from random import shuffle
import csv
import random
import math
import operator
#读取本地数据
#在函数中修改trainingSet和testSet,全局变量trainingSet和testSet也会发生改变:传的参数是引用,即直接检索的是地址

def loadDataset(filename,trainingSet=[],testSet=[]):
    with open(filename,'r') as csvfile:
        lines=csv.reader(csvfile)
        dataset=list(lines)
        shuffle(dataset)
        for x in range(len(dataset)):
            for y in range(4):
                dataset[x][y]=float(dataset[x][y])
        for x in range(100):
            trainingSet.append(dataset[x])
        for x in range(100,150):
            testSet.append(dataset[x])


#计算欧氏距离:
'''
先求得每对样本件的不同特征的差异值,
然后求差值的平方和,
然后再求这个和的平方根
'''
def EuclidDist(instance1,instance2,len):
    distance=0.0
    for x in  range(len):
        distance+=pow((instance1[x]-instance2[x]),2)
    return math.sqrt(distance)

#找位置点的邻居
def getNeighbors(trainSet,testInstance,k):
    distances=[]
    length=len(testInstance)-1
    for x in range(len(trainSet)):
        dist=EuclidDist(testInstance,trainSet[x],length)
        distances.append((trainSet[x],dist))
    distances.sort(key=operator.itemgetter(1))
    neighbors=[]
    for x in range(k):
        neighbors.append(distances[x][0])
    return neighbors

#判断归属的函数getClass
'''
统计邻居的类别,使用投票决策进行判别
'''
def getClass(neighbors):
    classVotes={}
    for x in range(len(neighbors)):
        instance_class=neighbors[x][-1]
        if instance_class in classVotes:
            classVotes[instance_class]+=1
        else:
            classVotes[instance_class]=1
    #python的内置函数sorted(),原型是sorted(iterable,key,reverse)。
    #iterable:指定要排序的可迭代对象。本例中classVotes.items()返回可迭代的字典元素
    #key:指定取待排序的那一项进行排序
    #reverse:布尔变量,true是降序,false是升序(默认)
    sortedVotes=sorted(classVotes.items(),key=operator.itemgetter(1),reverse=True)
    return sortedVotes[0][0]


#模型评估
'''
评估的指标是,测试集合的预测类别与其真实类别的比率
'''
def getAccurcy(testSet,predictions):
    correct=0
    for x in range(len(testSet)):
        if(testSet[x][-1]==predictions[x]):
            correct+=1
    return (correct/float(len(testSet)))*100.0

for k in range(1,101):
  pingjun=0
  print('当k=', k)
  for i in range(1, 11):

     trainingSet=[]
     testSet=[]
     loadDataset('iris.csv',trainingSet,testSet)

    #print('训练集样本数:' + repr(len(trainingSet)))
    #print('测试集样本数:' + repr(len(testSet)))
     predictions=[]
    #对预测集合元素进行预测
     for x in range(len(testSet)):
        #根据欧式距离(欧几里得)获取要进行预测的元素的neighbor
        neighbors=getNeighbors(trainingSet,testSet[x],k)
        #调用getClass函数,获取预测类别,然后存储
        result=getClass(neighbors)
        predictions.append(result)
        #print('>预测='+repr(result)+',实际='+repr(testSet[x][-1]))
    #调用getAccuracy函数,对模型进行评估
     accuracy=getAccurcy(testSet,predictions)
     pingjun+=accuracy

     print('第'+repr(i)+'次实验精确度为:'+repr(accuracy)+'%')
  print('平均精准度为:'+repr(pingjun/10)+'%')```

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值