基于Iris鸢尾花数据集,完成k-近邻方法的实验,随机选取其中的2/3作训练集,其余作测试集,计算分类准确率。这样的工作做10次(随机选数据10次,进行分类),计算出每次的准确率和平均准确率。
鸢尾花数据集:链接: https://pan.baidu.com/s/1XtrSq52xf3LfPQWKy8uokA 提取码: 6ri8
import numpy as np
from csv import reader
import pandas as pd
import matplotlib.pyplot as plt
from random import shuffle
import csv
import random
import math
import operator
#读取本地数据
#在函数中修改trainingSet和testSet,全局变量trainingSet和testSet也会发生改变:传的参数是引用,即直接检索的是地址
def loadDataset(filename,trainingSet=[],testSet=[]):
with open(filename,'r') as csvfile:
lines=csv.reader(csvfile)
dataset=list(lines)
shuffle(dataset)
for x in range(len(dataset)):
for y in range(4):
dataset[x][y]=float(dataset[x][y])
for x in range(100):
trainingSet.append(dataset[x])
for x in range(100,150):
testSet.append(dataset[x])
#计算欧氏距离:
'''
先求得每对样本件的不同特征的差异值,
然后求差值的平方和,
然后再求这个和的平方根
'''
def EuclidDist(instance1,instance2,len):
distance=0.0
for x in range(len):
distance+=pow((instance1[x]-instance2[x]),2)
return math.sqrt(distance)
#找位置点的邻居
def getNeighbors(trainSet,testInstance,k):
distances=[]
length=len(testInstance)-1
for x in range(len(trainSet)):
dist=EuclidDist(testInstance,trainSet[x],length)
distances.append((trainSet[x],dist))
distances.sort(key=operator.itemgetter(1))
neighbors=[]
for x in range(k):
neighbors.append(distances[x][0])
return neighbors
#判断归属的函数getClass
'''
统计邻居的类别,使用投票决策进行判别
'''
def getClass(neighbors):
classVotes={}
for x in range(len(neighbors)):
instance_class=neighbors[x][-1]
if instance_class in classVotes:
classVotes[instance_class]+=1
else:
classVotes[instance_class]=1
#python的内置函数sorted(),原型是sorted(iterable,key,reverse)。
#iterable:指定要排序的可迭代对象。本例中classVotes.items()返回可迭代的字典元素
#key:指定取待排序的那一项进行排序
#reverse:布尔变量,true是降序,false是升序(默认)
sortedVotes=sorted(classVotes.items(),key=operator.itemgetter(1),reverse=True)
return sortedVotes[0][0]
#模型评估
'''
评估的指标是,测试集合的预测类别与其真实类别的比率
'''
def getAccurcy(testSet,predictions):
correct=0
for x in range(len(testSet)):
if(testSet[x][-1]==predictions[x]):
correct+=1
return (correct/float(len(testSet)))*100.0
for k in range(1,101):
pingjun=0
print('当k=', k)
for i in range(1, 11):
trainingSet=[]
testSet=[]
loadDataset('iris.csv',trainingSet,testSet)
#print('训练集样本数:' + repr(len(trainingSet)))
#print('测试集样本数:' + repr(len(testSet)))
predictions=[]
#对预测集合元素进行预测
for x in range(len(testSet)):
#根据欧式距离(欧几里得)获取要进行预测的元素的neighbor
neighbors=getNeighbors(trainingSet,testSet[x],k)
#调用getClass函数,获取预测类别,然后存储
result=getClass(neighbors)
predictions.append(result)
#print('>预测='+repr(result)+',实际='+repr(testSet[x][-1]))
#调用getAccuracy函数,对模型进行评估
accuracy=getAccurcy(testSet,predictions)
pingjun+=accuracy
print('第'+repr(i)+'次实验精确度为:'+repr(accuracy)+'%')
print('平均精准度为:'+repr(pingjun/10)+'%')```