基于周志华西瓜数据集的决策树算法及准确率测试
1.决策树介绍
举个通俗的栗子来解释一下什么是决策树,想象一个女孩的母亲要给这个女孩介绍男朋友:
女儿:有没有房子?母亲:有。
女儿:长的帅不帅?母亲:挺帅的。
女儿:收入高不?
母亲:不算很高,中等情况。
女儿:是公务员不?母亲:是,在税务局上班呢。
女儿:那好,我去见见。
这个女孩的决策过程就是典型的分类树决策。相当于通过是否有房、长相、收入和是否公务员对将男人分为两个类别:见和不见。下面我们通过流程图把女儿的决策树判断过程展现出来:
通过这个例子,大家已经对决策树算法有个基本了解了吧,这也是决策树算法的一大优势——数据形式非常容易理解。
2.用python构造决策树基本流程
下图是西瓜书中的决策树学习基本算法,接下来我们将根据这个算法流程用python代码自己写一棵决策树。
在构造决策树时,要解决的第一个问题就是,当前数据集哪个特征在划分数据分类时起决定性作用。在前面相亲的例子中,女孩为何第一个问题是“是否有房子”呢,因为是否有房子这个特征能够提供的“信息量”很大,划分选择就是找提供“信息量”最大的特征,学术上叫信息增益。
3.划分选择(按照信息增益)
什么是信息增益呢,官方介绍请参考西瓜书哈,个人认为就是一个信息提纯的过程,比如一堆黄豆和一堆红豆混在一起,这时候信息的纯度是很低的,如果我们把红豆挑出来了分成两堆,那这时候纯度就高了。这就是一个信息增益的过程,衡量信息纯度的标准,就是信息熵。
信息熵是度量样本集合纯度最常用的一种指标,我的个人理解是对一个事件进行编码,所需要的平均码长就是信息熵,纯度越高,需要的平均代码就越短,信息熵越低。
当前样本集合D中第k类样本所占的比例为pk(k=1,2,…,n),则D的信息熵定义为
Ent(D)=−∑k=1npklog2pk
Ent(D)=−∑k=1npklog2pk
。
Ent(D)的值越小,则D的纯度越高。
西瓜数据集:链接: https://pan.baidu.com/s/1jxZvzUYX6QUk0cVH3d1vfw 提取码: 3ee9
随机1/3数据作为测试集
最初代码:
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import collections
#计算给定数据集的香浓熵
from math import log
def splitDataSet(dataSet, index, feature):
splitedDataSet = []
mD = len(dataSet)
for data in dataSet:
if(data[index] == feature):
sliceTmp = data[:index]
sliceTmp.extend(data[index + 1:])
splitedDataSet.append(sliceTmp)
return splitedDataSet
def Ent(dataset):
n = len(dataset)
label_counts = {}
for item in dataset:#遍历数据集
label_current = item[-1]#存入
if label_current not in label_counts.keys():
label_counts[label_current] = 0#将特征值存入,并标记为0
label_counts[label_current] += 1
ent = 0.0
for key in label_counts:
prob = label_counts[key]/n
ent -= prob * log(prob,2)
return ent
#测试我们编写的香浓熵计算函数
data = pd.read_csv('xigua1.csv',encoding='gbk')
print(data)
#test=pd.read_csv('textSet.csv')
#print(test)
#a=Ent(data.iloc[:,-1])#取数据集最后一列
#按照权重计算各分支的信息熵
def sum_weight(grouped,total_len):
weight = len(grouped)/total_len
return weight * Ent(grouped.iloc[:,-1])
#根据公式计算信息增益
def Gain(column, data):
lenth = len(data)
ent_sum = data.groupby(column).apply(lambda x:sum_weight(x,lenth)).sum()#按照column重新排列,然后计算信息熵,再加一块 ☆!!
#print("11",ent_sum)
ent_D = Ent(data.iloc[:,-1])
#print("22",ent_D)
return ent_D - ent_sum
#计算按照属性'色泽'的信息增益
# 计算获取最大的信息增益的feature,输入data是一个dataframe,返回是一个字符串
def get_max_gain(data):
max_gain = 0.0
cols = data.columns[:-1]
for col in cols:
gain = Gain(col,data)
#print(gain)
if gain > max_gain:
max_gain = gain
max_label = col
return max_label
#获取data中最多的类别作为节点分类,输入一个series,返回一个索引值,为字符串
def get_most_label(label_list):
return label_list.value_counts().idxmax() #value_counts:指数据集中值有哪些,每个出现多少次
# 创建决策树,传入的是一个dataframe,最后一列为label
def TreeGenerate(data):
feature = train.columns[:-1]
label_list = data.iloc[:, -1]
#如果样本全属于同一类别C,将此节点标记为C类叶节点
if len(pd.unique(label_list)) == 1:
return label_list.values[0]
#如果待划分的属性集A为空,或者样本在属性A上取值相同,则把该节点作为叶节点,并标记为样本数最多的分类
elif len(feature)==0 or len(data.loc[:,feature].drop_duplicates())==1:
return get_most_label(label_list)
#从A中选择最优划分属性
best_attr = get_max_gain(data)
tree = {best_attr: {}}
#对于最优划分属性的每个属性值,生成一个分支
for attr,gb_data in data.groupby(by=best_attr):
if len(gb_data) == 0:
tree[best_attr][attr] = get_most_label(label_list)
else:
#在data中去掉已划分的属性
new_data = gb_data.drop(best_attr,axis=1)
#递归构造决策树
tree[best_attr][attr] = TreeGenerate(new_data)
return tree
#使用递归函数进行分类
def tree_predict(tree, data):
#print(data)
feature = list(tree.keys())[0]#取树第一个结点的键(特征)
#print(feature)
label = data[feature]#该特征下所有属性
next_tree = tree[feature][label]#下一个结点树
if type(next_tree) == str:#如果是个字符串
return next_tree
else:
return tree_predict(next_tree, data)
#切割训练集和测试集
# 训练模型
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
#切割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data.iloc[:,:-1], data.iloc[:,-1], test_size = 0.3, random_state=1)
train = pd.concat([X_train,y_train],axis=1)
print("train",X_train)
print("test",y_test)
decition_tree = TreeGenerate(train)
print(decition_tree)
y_predict = X_test.apply(lambda x:tree_predict(decition_tree, x),axis=1)
score = accuracy_score(y_test,y_predict)
print('第实验准确率为:'+repr(score*100)+'%')
其实上面算法是有缺陷的,有可能缺失分支,需要补全分支:
import numpy as np
import pandas as pd
import random
import csv
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
#计算熵
def calcEntropy(dataSet):
mD = len(dataSet)
dataLabelList = [x[-1] for x in dataSet]
dataLabelSet = set(dataLabelList)
ent = 0
for label in dataLabelSet:
mDv = dataLabelList.count(label)
prop = float(mDv) / mD
ent = ent - prop * np.math.log(prop, 2)
return ent
# # 拆分数据集
# # index - 要拆分的特征的下标
# # feature - 要拆分的特征
# # 返回值 - dataSet中index所在特征为feature,且去掉index一列的集合
def splitDataSet(dataSet, index, feature):
splitedDataSet = []
mD = len(dataSet)
for data in dataSet:
if(data[index] == feature):
sliceTmp = data[:index]
sliceTmp.extend(data[index + 1:])
splitedDataSet.append(sliceTmp)
return splitedDataSet
#根据信息增益 - 选择最好的特征
# 返回值 - 最好的特征的下标
def chooseBestFeature(dataSet):
entD = calcEntropy(dataSet)
mD = len(dataSet)
featureNumber = len(dataSet[0]) - 1
maxGain = -100
maxIndex = -1
for i in range(featureNumber):
entDCopy = entD
featureI = [x[i] for x in dataSet]
featureSet = set(featureI)
for feature in featureSet:
splitedDataSet = splitDataSet(dataSet, i, feature) # 拆分数据集
mDv = len(splitedDataSet)
entDCopy = entDCopy - float(mDv) / mD * calcEntropy(splitedDataSet)
if(maxIndex == -1):
maxGain = entDCopy
maxIndex = i
elif(maxGain < entDCopy):
maxGain = entDCopy
maxIndex = i
return maxIndex
# 寻找最多的,作为标签
def mainLabel(labelList):
labelRec = labelList[0]
maxLabelCount = -1
labelSet = set(labelList)
for label in labelSet:
if(labelList.count(label) > maxLabelCount):
maxLabelCount = labelList.count(label)
labelRec = label
return labelRec
#生成决策树
# featureNamesSet 是featureNames取值的集合
# labelListParent 是父节点的标签列表
def createDecisionTree(dataSet, featureNames):
labelList = [x[-1] for x in dataSet]
if(len(dataSet[0]) == 1): #没有可划分的属性了
return mainLabel(labelList) #选出最多的label作为该数据集的标签
elif(labelList.count(labelList[0]) == len(labelList)): # 全部都属于同一个Label
return labelList[0]
bestFeatureIndex = chooseBestFeature(dataSet)
bestFeatureName = featureNames.pop(bestFeatureIndex)
myTree = {bestFeatureName: {}}
featureList = [x[bestFeatureIndex] for x in dataSet]
featureSet = set(featureList)
for feature in featureSet:
featureNamesNext = featureNames[:]
splitedDataSet = splitDataSet(dataSet, bestFeatureIndex, feature)
myTree[bestFeatureName][feature] = createDecisionTree(splitedDataSet, featureNamesNext)
return myTree
def createFullDecisionTree(dataSet, featureNames, featureNamesSet, labelListParent):
labelList = [x[-1] for x in dataSet]
if(len(dataSet) == 0):
return mainLabel(labelListParent)
elif(len(dataSet[0]) == 1): #没有可划分的属性了
return mainLabel(labelList) #选出最多的label作为该数据集的标签
elif(labelList.count(labelList[0]) == len(labelList)): # 全部都属于同一个Label
return labelList[0]
bestFeatureIndex = chooseBestFeature(dataSet)
#print('index',bestFeatureIndex)
bestFeatureName = featureNames.pop(bestFeatureIndex)
myTree = {bestFeatureName: {}}
featureList = featureNamesSet.pop(bestFeatureIndex)
#print('ss',featureList)
featureSet = set(featureList)
#print('featureSet',featureSet)
for feature in featureSet:
featureNamesNext = featureNames[:]
#print('featureNamesNext',featureNamesNext)
featureNamesSetNext = featureNamesSet[:][:]
#print('featureNamesSetNext',featureNamesSetNext)
splitedDataSet = splitDataSet(dataSet, bestFeatureIndex, feature)
myTree[bestFeatureName][feature] = createFullDecisionTree(splitedDataSet, featureNamesNext, featureNamesSetNext, labelList)
return myTree
#读取西瓜数据集2.0
def readWatermelonDataSet():
ifile = open("xigua1.txt")
#print(ifile)
featureName = ifile.readline() #表头
featureName = featureName.rstrip("\n")
#print(featureName)
featureNames = (featureName.split(' ')[0]).split(',')
#print(featureNames)
lines = ifile.readlines()
dataSet = []
for line in lines:
tmp = line.split('\n')[0]
#print('tmp',tmp)
tmp = tmp.split(',')
dataSet.append(tmp)
random.shuffle(dataSet)
dlen = int(len(dataSet) * 2 / 3)
testDlen = len(dataSet) - dlen
D = dataSet[0:dlen]
#print('d',D)
testD = dataSet[dlen:len(dataSet)]
labelList = [x[-1] for x in D]
#print('labelList',labelList)
#获取featureNamesSet
featureNamesSet = []
for i in range(len(D[0]) - 1):
col = [x[i] for x in D]
colSet = set(col)
featureNamesSet.append(list(colSet))
#print('saa',featureNamesSet)
return D, featureNames, featureNamesSet,labelList,testD
def tree_predict(tree, data):
#print(data)
feature = list(tree.keys())[0]#取树第一个结点的键(特征)
#print(feature)
label = data[feature]#该特征下所有属性
next_tree = tree[feature][label]#下一个结点树
if type(next_tree) == str:#如果是个字符串
return next_tree
else:
return tree_predict(next_tree, data)
def main():
#读取数据
pingjun=0.0
for i in range(1,11):
dataSet, featureNames, featureNamesSet,labelList,testD = readWatermelonDataSet()
#print('daas',dataSet)
tree=createFullDecisionTree(dataSet, featureNames,featureNamesSet,labelList)
tree2=createDecisionTree(dataSet, featureNames)
#print('tree2',tree2)
print(tree)
train= pd.DataFrame(dataSet, columns=['色泽','根蒂','敲声','纹理','脐部','触感','好瓜'])
#print('train',train)
test=pd.DataFrame(testD, columns=['色泽','根蒂','敲声','纹理','脐部','触感','好瓜'])
#print('test', test)
feature = list(train.columns[:])
#print('feat',feature)
y_predict = test.apply(lambda x: tree_predict(tree, x), axis=1)
label_list = test.iloc[:, -1]
score = accuracy_score(label_list, y_predict)
pingjun+=score
print('第'+repr(i)+'次补全分支准确率为:' + repr(score * 100) + '%')
print("平均准确率为:"+repr(pingjun*10)+'%')
if __name__ == "__main__":
main()