opencv 角点检测

本文介绍了角点检测的基本概念和两种经典算法:Harri算法与Shi-Tomasi算法。Harri算法通过计算梯度特征值来检测角点,而Shi-Tomasi算法通过设定阈值简化了特征值判断,提供了更直观的角点检测。此外,文章还提及了亚像素角点检测,用于提高定位精度。
摘要由CSDN通过智能技术生成

一、话说角点

三种基本的图像特征

  • 边缘,对应下图黑框部分
  • 角点,对应下图红框部分
  • 团块,对应下图蓝框部分

下面介绍三种经典的角点检测的算法(前方公式高能,非战斗人员可直接跳到API和Demo部分)

  • Harri算法
  • Shi-Tomasi算法
  • 亚像素级角点检测

二、Harri算法

Harri算法作为一种角点检测的经典算法,核心思想还是对像素进行梯度运算,总结角点处梯度的特征,前面讲到了XY角点的梯度特征,小林就以这个特征讲解Harri算法。

Harri算法有两种常见的表达式我们先来看第一种。

E\left( u,v \right)=\sum_{x,y}^{}{w\left( x,y \right)\left[ I\left( x+u,y+v \right)-I\left( x,y \right) \right]^{2}}

  • u和v:窗口偏移量
  • x和y:窗口内像素坐标
  • W(X,Y) :窗口函数,内含权重信息,常用的有权重为1和呈二元高斯正太分布的权重意在突出像素值变化明显的程度
  • 函数 I:像素密度函数,类比与像素值

现在来处理下这个公式,我们对后面平方项的求和式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值