矩阵的逆
运算符:inv
调用格式:B=inv(A)
例:设矩阵A和B满足关系式:AB=A+2B.其中,A=[4 2 3;1 1 0;-1 2 3]求矩阵B
解法如下:
因而:
A=[4,2,3;1,1,0;-1,2,3];
B=inv(A-2*eye(3))*A %eye(3)即三阶的单位阵
矩阵的特征值
特征值,是线性代数中的一个重要概念,是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。
运算符:eig
调用格式:eig(A)
如:
A=[1,0,0;2,3,0;4,5,6];
eig(A)
矩阵的特征多项式
运算符:poly
调用格式:poly(A)
如A=[1,0,0;0,2,0;0,0,3]
即:(λE-A)=(λ-1)(λ-2)(λ-3)
展开有:aλ³±bλ²±cλ-6
poly(A),即可得到其系数
即:a=1,b=-6,c=11