MATLAB数值计算——矩阵的逆、矩阵的特征值、矩阵的特征多项式

本文介绍了矩阵的逆运算、特征值及其应用。通过具体例子展示了如何使用inv运算符求解矩阵方程,并利用eig计算矩阵的特征值。同时,讲解了特征多项式和poly函数的使用,用于确定矩阵的特征多项式系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵的逆

运算符:inv
调用格式:B=inv(A)

例:设矩阵A和B满足关系式:AB=A+2B.其中,A=[4 2 3;1 1 0;-1 2 3]求矩阵B
解法如下:
在这里插入图片描述
因而:

A=[4,2,3;1,1,0;-1,2,3];
B=inv(A-2*eye(3))*A  %eye(3)即三阶的单位阵

在这里插入图片描述

矩阵的特征值

特征值,是线性代数中的一个重要概念,是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。

运算符:eig
调用格式:eig(A)
如:

A=[1,0,0;2,3,0;4,5,6];
eig(A)

在这里插入图片描述

矩阵的特征多项式

运算符:poly
调用格式:poly(A)
如A=[1,0,0;0,2,0;0,0,3]
即:(λE-A)=(λ-1)(λ-2)(λ-3)
展开有:aλ³±bλ²±cλ-6
poly(A),即可得到其系数
在这里插入图片描述
即:a=1,b=-6,c=11

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华毓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值