任务要求
-
搭建ELK集群
-
收集日志信息并展示
任务拆解
-
认识ELK
-
部署elasticsearch集群并了解其基本概念
-
安装elasticsearch-head实现图形化操作
-
安装logstash收集日志
-
安装kibana日志展示
-
安装file beat实现轻量级日志收集
学习目标
-
能够说出ELK的应用场景
-
能够区分ELK架构中elasticsearch,logstash,kibina三个软件各自的主要功能
-
能够单机部署elasticsearch
-
能够部署elasticsearch集群
-
理解ELK中索引的概念
-
能够部署logstash
-
能够使用logstash做日志采集
认识ELK
-
ELK是一套开源的日志分析系统,由elasticsearch+logstash+Kibana组成。
-
首先: 先一句话简单了解E,L,K这三个软件
-
elasticsearch: 分布式搜索引擎
-
logstash: 日志收集与过滤,输出给elasticsearch
-
Kibana: 图形化展示
ELK 下载地址:下载 Elastic 产品 | Elastic
一、ELK概述
1.1 ELK介绍
ELK是三个开源软件的缩写,分别表示:Elasticsearch , Logstash, Kibana , 它们都是开源软件。新增了一个FileBeat,它是一个轻量级的日志收集处理工具(Agent),Filebeat占用资源少,适合于在各个服务器上搜集日志后传输给Logstash,官方也推荐此工具。
Elasticsearch是个开源分布式搜索引擎,提供搜集、分析、存储数据三大功能。它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。主要负责将日志索引并存储起来,方便业务方检索查询。
Logstash主要是用来日志的搜集、分析、过滤日志的工具,支持大量的数据获取方式。一般工作方式为c/s架构,client端安装在需要收集日志的主机上,server端负责将收到的各节点日志进行过滤、修改等操作在一并发往elasticsearch上去。是一个日志收集、过滤、转发的中间件,主要负责将各条业务线的各类日志统一收集、过滤后,转发给 Elasticsearch 进行下一步处理。
数据分为:
1. 结构化数据 如:mysql数据库里的表等 2. 半结构化数据 如: xml,yaml,json等 3. 非结构化数据 如:文档,图片,音频,视频等
logstash可以采集任何格式的数据,当然我们这里主要是讨论采集系统日志,服务日志等日志类型数据。 官方产品介绍:Logstash:收集、解析和转换日志 | Elastic
input插件: 用于导入日志源 (==配置必须==) Input plugins | Logstash Reference [8.2] | Elastic filter插件: 用于过滤(==不是配置必须的==) Filter plugins | Logstash Reference [8.2] | Elastic output插件: 用于导出(==配置必须==) Output plugins | Logstash Reference [8.2] | Elastic
Kibana也是一个开源和免费的工具,Kibana可以为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面,可以帮助汇总、分析和搜索重要数据日志。
文档路径: Set up | Kibana Guide [8.2] | Elastic
1.2 ELK架构图
这是最简单的一种ELK架构方式。优点是搭建简单,易于上手。缺点是Logstash耗资源较大,运行占用CPU和内存高。另外没有消息队列缓存,存在数据丢失隐患。 此架构由Logstash分布于各个节点上搜集相关日志、数据,并经过分析、过滤后发送给远端服务器上的Elasticsearch进行存储。Elasticsearch将数据以分片的形式压缩存储并提供多种API供用户查询,操作。用户亦可以更直观的通过配置Kibana Web方便的对日志查询,并根据数据生成报表。
此种架构引入了消息队列机制,位于各个节点上的Logstash Agent先将数据/日志传递给Kafka(或者Redis),并将队列中消息或数据间接传递给Logstash,Logstash过滤、分析后将数据传递给Elasticsearch存储。最后由Kibana将日志和数据呈现给用户。因为引入了Kafka(或者Redis),所以即使远端Logstash server因故障停止运行,数据将会先被存储下来,从而避免数据丢失。
此种架构将收集端logstash替换为beats,更灵活,消耗资源更少,扩展性更强。同时可配置Logstash 和Elasticsearch 集群用于支持大集群系统的运维日志数据监控和查询。
1.3 Logstash工作原理
Logstash事件处理有三个阶段:inputs → filters → outputs。是一个接收,处理,转发日志的工具。支持系统日志,webserver日志,错误日志,应用日志,总之包括所有可以抛出来的日志类型。
Input:输入数据到logstash。
一些常用的输入为
-
file:从文件系统的文件中读取,类似于tial -f命令
-
syslog:在514端口上监听系统日志消息,并根据RFC3164标准进行解析
-
redis:从redis service中读取
-
beats:从filebeat中读取
-
Filters:数据中间处理,对数据进行操作。
-
一些常用的过滤器为:
-
grok:解析任意文本数据,Grok 是 Logstash 最重要的插件。它的主要作用就是将文本格式的字符串,转换成为具体的结构化的数据,配合正则表达式使用。内置120多个解析语法。
-
mutate:对字段进行转换。例如对字段进行删除、替换、修改、重命名等。
-
drop:丢弃一部分events不进行处理。
-
clone:拷贝 event,这个过程中也可以添加或移除字段。
-
geoip:添加地理信息(为前台kibana图形化展示使用)
-
Outputs:outputs是logstash处理管道的最末端组件。一个event可以在处理过程中经过多重输出,但是一旦所有的outputs都执行结束,这个event也就完成生命周期。
一些常见的outputs为
-
elasticsearch:可以高效的保存数据,并且能够方便和简单的进行查询。
-
file:将event数据保存到文件中。
-
graphite:将event数据发送到图形化组件中,一个很流行的开源存储图形化展示的组件。
-
Codecs:codecs 是基于数据流的过滤器,它可以作为input,output的一部分配置。Codecs可以帮助你轻松的分割发送过来已经被序列化的数据。
-
一些常见的codecs:
-
json:使用json格式对数据进行编码/解码。
-
multiline:将汇多个事件中数据汇总为一个单一的行。比如:java异常信息和堆栈信息。
1.4 Filebeat工作原理
beats是轻量级的日志收集处理工具,Beats占用资源少
目前Beats包含以下工具:
-
Packetbeat: 网络数据(收集网络流量数据)
-
Metricbeat: 指标 (收集系统、进程和文件系统级别的 CPU 和内存使用情况等数据)
-
Filebeat: 文件(收集日志文件数据)
-
Winlogbeat: windows事件日志(收集 Windows 事件日志数据)
-
Auditbeat:审计数据 (收集审计日志)
-
Heartbeat:运行时间监控 (收集系统运行时的数据)
我们这里主要是收集日志信息, 所以只讨论filebeat。
filebeat可以直接将采集的日志数据传输给ES集群(EFK), 也可以给logstash(5044端口接收)。
Filebeat由两个主要组件组成:prospectors 和 harvesters。这两个组件协同工作将文件变动发送到指定的输出中。
Harvester(收割机):负责读取单个文件内容。 每个文件会启动一个Harvester,每个Harvester会逐行读取各个文件,并将文件内容发送到制定输出中。Harvester负责打开和关闭文件,意味在Harvester运行的时候,文件描述符处于打开状态,如果文件在收集中被重命名或者被删除,Filebeat会继续读取此文件。所以在Harvester关闭之前,磁盘不会被释放。默认情况filebeat会保持文件打开的状态,直到达到close_inactive(如果此选项开启,filebeat会在指定时间内将不再更新的文件句柄关闭,时间从harvester读取最后一行的时间开始计时。若文件句柄被关闭后,文件发生变化,则会启动一个新的harvester。关闭文件句柄的时间不取决于文件的修改时间,若此参数配置不当,则可能发生日志不实时的情况,由scan_frequency参数决定,默认10s。Harvester使用内部时间戳来记录文件最后被收集的时间。例如:设置5m,则在Harvester读取文件的最后一行之后,开始倒计时5分钟,若5分钟内文件无变化,则关闭文件句柄。默认5m)。
Prospector(勘测者):负责管理Harvester并找到所有读取源。 Prospector会找到/apps/logs/*目录下的所有info.log文件,并为每个文件启动一个Harvester。Prospector会检查每个文件,看Harvester是否已经启动,是否需要启动,或者文件是否可以忽略。若Harvester关闭,只有在文件大小发生变化的时候Prospector才会执行检查。只能检测本地的文件。
Filebeat如何记录文件状态 将文件状态记录在文件中(默认在/var/lib/filebeat/registry)。此状态可以记住Harvester收集文件的偏移量。若连接不上输出设备,如ES等,filebeat会记录发送前的最后一行,并再可以连接的时候继续发送。Filebeat在运行的时候,Prospector状态会被记录在内存中。Filebeat重启的时候,利用registry记录的状态来进行重建,用来还原到重启之前的状态。每个Prospector会为每个找到的文件记录一个状态,对于每个文件,Filebeat存储唯一标识符以检测文件是否先前被收集。
Filebeat如何保证事件至少被输出一次 Filebeat之所以能保证事件至少被传递到配置的输出一次,没有数据丢失,是因为filebeat将每个事件的传递状态保存在文件中。在未得到输出方确认时,filebeat会尝试一直发送,直到得到回应。若filebeat在传输过程中被关闭,则不会再关闭之前确认所有时事件。任何在filebeat关闭之前为确认的时间,都会在filebeat重启之后重新发送。这可确保至少发送一次,但有可能会重复。可通过设置shutdown_timeout 参数来设置关闭之前的等待事件回应的时间(默认禁用)。
二、ELK环境部署
环境准备:
四台机器(内存建议大于1G,比如1.5G; filebeat服务器可为1G) :
1,静态IP(虚拟机的NAT网络类型)
2,主机名及主机名绑定
IP | host | app | mem |
---|---|---|---|
192.168.30.12 | vm12 | elasticsearch | 2G |
192.168.30.13 | vm13 | elasticsearch2 + logstash | 2G |
192.168.30.14 | vm14 | filebeat | 2G |
192.168.30.15 | vm15 | kibana | 2G |
3, 关闭防火墙和selinux
systemctl stop firewalld && systemctl disable firewalld
sed -i 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/selinux/config
setenforce 0
4, 时间同步(使用vmware同步主机的功能)
systemctl restart ntpd
systemctl enable ntpd
2.1 安装Elasticsearch环境
2.1.1 集群部署主要注意以下几个方面
集群配置参数:
discovery.zen.ping.unicast.hosts,Elasticsearch默认使用Zen Discovery来做节点发现机制,推荐使用unicast来做通信方式,在该配置项中列举出Master节点。
discovery.zen.minimum_master_nodes,该参数表示集群中Master节点可工作Master的最小票数,默认值是1。为了提高集群的可用性,避免脑裂现象。官方推荐设置为(N/2)+1,其中N是具有Master资格的节点的数量。
discovery.zen.ping_timeout,表示节点在发现过程中的等待时间,默认值是30秒,可以根据自身网络环境进行调整,一定程度上提供可用性。
集群节点:
节点类型主要包括Master节点和data节点(client节点和ingest节点不讨论)。通过设置两个配置项node.master和node.data为true或false来决定将一个节点分配为什么类型的节点。
尽量将Master节点和Data节点分开,通常Data节点负载较重,需要考虑单独部署。
内存:
Elasticsearch默认设置的内存是1GB,对于任何一个业务部署来说,这个都太小了。通过指定ES_HEAP_SIZE环境变量,可以修改其堆内存大小,服务进程在启动时候会读取这个变量,并相应的设置堆的大小。建议设置系统内存的一半给Elasticsearch,但是不要超过32GB。
硬盘空间:
Elasticsearch默认将数据存储在/var/lib/elasticsearch路径下,随着数据的增长,一定会出现硬盘空间不够用的情形,大环境建议把分布式存储挂载到/var/lib/elasticsearch目录下以方便扩容。
2.1.2 在ES集群所有节点都安装ES
# 在vm12服务器上安装JDK1.8并配置环境变量
## 将JDK解压到opt目录下
tar xf jdk-8u261-linux-x64.tar.gz -C /opt/
## 创建软链接连接
ln -s /opt/jdk1.8.0_261/bin/* /usr/local/sbin/
## es的安装,配置
export JAVA_HOME=/opt/jdk1.8.0_261/
rpm -ivh elasticsearch-6.5.2.rpm
## 两台或两台以上ES做集群, 以下就是两台ES做集群的配置
# vm12节点
cat /etc/elasticsearch/elasticsearch.yml | grep -v "#"
# 可以自定义一个集群名称,不配置的话默认会取名为elasticsearch
cluster.name: elk-cluster
# 本机IP或主机名
node.name: vm12
# 指定为master节点
node.master: true
path.data: /var/lib/elasticsearch
path.logs: /var/log/elasticsearch
# 打开注释,并修改为监听所有
network.host: 0.0.0.0
# 打开注释,监听端口9200
http.port: 9200
# 集群所有节点IP
discovery.zen.ping.unicast.hosts: ["192.168.30.12", "192.168.30.13"]
# vm13节点
cat /etc/elasticsearch/elasticsearch.yml |grep -v "#"
cluster.name: elk-cluster
node.name: vm13
# 指定为非master节点
node.master: false
path.data: /var/lib/elasticsearch
path.logs: /var/log/elasticsearch
network.host: 0.0.0.0
http.port: 9200
discovery.zen.ping.unicast.hosts: ["192.168.30.12", "192.168.30.13"]
## 启动或重启服务
## 两台机子启动服务,启动有点慢和卡,稍等1分钟左右,查看到以下端口则表示启动OK
systemctl start elasticsearch
systemctl enable elasticsearch
# 查看状态
netstat -ntlup |grep java
tcp6 0 0 :::9200 :::* LISTEN 5329/java
tcp6 0 0 :::9300 :::* LISTEN 5329/java
#9200则是数据传输端口
#9300端口是集群通信端口
浏览器访问http://192.168.30.12:9200/cluster/health?pretty
2.2 安装logstash环境
要求:
已经安装好的Elasticsearch集群环境
2.2.1 安装
# 在需要安装logstash服务器上确认安装JDK 1.8
# 在vm13服务器上安装logstash
rpm -ivh logstash-6.5.2.rpm
# 配置logstash主配置文件
cat /etc/logstash/logstash.yml |grep -v '#' | grep -v '^$'
path.data: /var/lib/logstash #运行数据存储路径
http.host: "0.0.0.0" #打开注释,并改为本机IP(这是用于xpack监控用)
path.logs: /var/log/logstash #日志存储路径
# 生成systemctl控制脚本
/usr/share/logstash/bin/system-install
# 编辑控制脚本,使其用root用户启动
vim /etc/systemd/system/logstash.service
2.2.2 启动测试
cd /usr/share/logstash/bin
# 使用下面的空输入和空输出启动测试一下
./logstash -e 'input {stdin {}} output {stdout {}}'
# 运行后,输入字符将被stdout做为标准输出内容输出
看到上图说明启动正常。
测试能启动成功后,ctrl+c取消,则关闭了
2.2.3 日志采集
采集messages日志,这里以/var/log/messages为例,只定义input输入和output输出,不考虑过滤
vim /etc/logstash/conf.d/messages.conf
input {
file {
path => "/var/log/messages"
start_position => "beginning"
}
}
output {
elasticsearch{
hosts => ["192.168.30.12:9200"]
index => "test-%{+YYYY.MM.dd}"
}
}
# 测试配置文件
./logstash --path.settings /etc/logstash/ -f /etc/logstash/conf.d/messages.conf -t
# 启动logstash,并设置开机自启
systemctl start logstash.service
systemctl enable logstash.service
# 查看日志运行情况
tail -f /var/log/logstash/logstash-plain.log
http://192.168.30.12:9200/_cat/indices?v
2.3 安装kibana环境
学习目标
-
能够部署kibana并连接elasticsearch集群
-
能够通过kibana查看elasticsearch索引信息
2.3.1 kibana部署
# vm14安装kibana
rpm -ivh kibana-6.5.2-x86_64.rpm
# 配置kibana
cat /etc/kibana/kibana.yml |grep -v '#' |grep -v '^$'
server.port: 5601 #端口
server.host: "0.0.0.0" #监听所有,允许所有人能访问
elasticsearch.url: "http://192.168.30.12:9200" #ES集群的路径
logging.dest: /var/log/kibana.log #这里加了kibana日志,方便排错与调试
# 日志要自己建立,并修改owner和group属性
touch /var/log/kibana.log
chown kibana.kibana /var/log/kibana.log
# 启动kibana服务
systemctl start kibana && systemctl enable kibana
# 通过浏览器访问 http://kibana服务器IP:5601
2.3.2 kibana汉化
#这里要注意:1,要安装python; 2,rpm版的kibana安装目录为/usr/share/kibana/
cd Kibana_Hanization-master
python main.py /usr/share/kibana/
# 汉化完后需要重启
systemctl stop kibana && systemctl start kibana
# 再次通过浏览器访问 http://kibana服务器IP:5601
2.3.3 kibana使用
通过kibana查看集群信息
通过kibana查看logstash收集的日志索引
最后点发现查看
通过kibana做可视化图形
2.4 安装filebeat环境
虽然logstash功能很强大,但由于消耗内存等资源太高,如果在要采集的服务上都安装logstash,这样对应用服务器的压力增加。所以我们要用轻量级的采集工具才更高效,更省资源。
2.4.1 filebeat收集日志直接传输给ES集群
# vm14安装filebeat
rpm -ivh filebeat-6.5.2-x86_64.rpm
# 配置filebeat收集日志
cat /etc/filebeat/filebeat.yml |grep -v '#' |grep -v '^$'
filebeat.inputs:
- type: log
enabled: true #改为true
paths: #收集的日志路径
- /var/log/*.log
filebeat.config.modules:
path: ${path.config}/modules.d/*.yml
reload.enabled: false
setup.template.settings:
index.number_of_shards: 3
setup.kibana:
output.elasticsearch: #输出给es集群
hosts: ["192.168.30.12:9200"] #es集群节点ip
processors:
- add_host_metadata: ~
- add_cloud_metadata: ~
# 启动服务
systemctl start filebeat && systemctl enable filebeat
# 验证
# 在kibana上验证
2.3.2 filebeat传输给logstash
#在logstash上要重新配置,开放5044端口给filebeat连接
vim /etc/logstash/conf.d/filebeat.conf
input {
beats {
port => 5044
}
}
output {
elasticsearch {
hosts => ["192.168.30.12:9200"]
index => "filebeat2-%{+YYYY.MM.dd}"
}
stdout { #再加一个标准输出到屏幕,方便实验环境调试
}
}
# 重启logstash服务
systemctl restart logstash.service
# 配置filebeat收集日志
cat /etc/filebeat/filebeat.yml |grep -v '#' |grep -v '^$'
filebeat.inputs:
- type: log
enabled: true 改为true
paths:
- /var/log/*.log 收集的日志路径
filebeat.config.modules:
path: ${path.config}/modules.d/*.yml
reload.enabled: false
setup.template.settings:
index.number_of_shards: 3
setup.kibana:
output.logstash: # 这两句非常重要,表示日志输出给logstash
hosts: ["192.168.30.13:5044"]
processors:
- add_host_metadata: ~
- add_cloud_metadata: ~
# 启动服务
systemctl restart filebeat
# 在kibana上验证
三、 Filebeat收集nginx日志
1, 在filebeat这台服务器上安装nginx,启动服务。并使用浏览器访问刷新一下,模拟产生一些相应的日志(==强调==: 我们在这里是模拟的实验环境,一定要搞清楚实际情况下是把filebeat安装到nginx服务器上去收集日志)
yum install nginx -y
systemctl start nginx
systemctl enable nginx
2, 修改filebeat配置文件,并重启服务
cat /etc/filebeat/filebeat.yml |grep -v '#' |grep -v '^$'
filebeat.inputs:
- type: log
enabled: true
paths:
- /var/log/*.log
# 只在这里加了一句nginx日志路径(按需求自定义即可)
- /var/log/nginx/access.log
filebeat.config.modules:
path: ${path.config}/modules.d/*.yml
reload.enabled: false
setup.template.settings:
index.number_of_shards: 3
setup.kibana:
output.logstash:
hosts: ["192.168.30.13:5044"]
processors:
- add_host_metadata: ~
- add_cloud_metadata: ~
systemctl restart filebeat
3, 验证(在kibana上查询)
练习: 尝试收集httpd,mysql日志
实验中易产生的问题总结:
filebeat配置里没有把output.elasticsearch改成output.logstash
filebeat在收集/var/log/*.log日志时,需要对日志进行数据的改变或增加,才会传。
当/var/log/yum.log增加了日志数据会传输,但不会触发配置里的其它日志传输。(每个日志的传输
是独立的)
filebeat收集的日志没有定义索引名称, 我这个实验是在logstash里定义的。(此例我定义的索引名叫
filebeat2-%{+YYYY.MM.dd})
es-head受资源限制可能会关闭了,你在浏览器上验证可能因为缓存问题,看不到变化的结果。
区分索引名和索引模式(index pattern)名
filebeat日志简单过滤
grep -Ev '#|^$' /etc/filebeat/filebeat.yml
filebeat.inputs:
- type: log
enabled: true
paths:
- /var/log/yum.log
- /var/log/nginx/access.log
include_lines: ['Installed'] #表示收集的日志里有Installed关键字才会收集
filebeat.config.modules:
path: ${path.config}/modules.d/*.yml
reload.enabled: false
setup.template.settings:
index.number_of_shards: 3
setup.kibana:
output.logstash:
hosts: ["192.168.30.13:5044"]
processors:
- add_host_metadata: ~
- add_cloud_metadata: ~
systemctl restart filebeat
# 测试方法:
# 通过 yum install 和 yum remove 产生日志,检验结果
# 结果为: yum install 安装可以收集, yum remove 卸载的不能收集
# 其它参数可以自行测试
exclude_lines
exclude_files
四、Logstach收集交换机日志
1、交换机配置
本次使用HuaWei设备安装
添加:info-center loghost 192.168.30.13,IP地址是logstash服务器,默认是UDP514端口发送数据
2、logstash配置
1、关闭rsyslog服务,因为这个会占用514端口
systemctl stop rsyslog && systemctl status rsyslog
2、编辑logstash配置文件,根据监听交换机端口区分不通网络设备型号
vim /etc/logstash/conf.d/switch.conf
input{
tcp { port => 5002
type => "Cisco"}
udp { port => 514
type => "HUAWEI"}
udp { port => 5002
type => "Cisco"}
udp { port => 5003
type => "H3C"}
}
filter {
if [type] == "Cisco" {
grok {
match => { "message" => "<%{BASE10NUM:syslog_pri}>%{NUMBER:log_sequence}: .%{SYSLOGTIMESTAMP:timestamp}: %%{DATA:facility}-%{POSINT:severity}-%{CISCO_REASON:mnemonic}: %{GREEDYDATA:message}" }
match => { "message" => "<%{BASE10NUM:syslog_pri}>%{NUMBER:log_sequence}: %{SYSLOGTIMESTAMP:timestamp}: %%{DATA:facility}-%{POSINT:severity}-%{CISCO_REASON:mnemonic}: %{GREEDYDATA:message}" }
add_field => {"severity_code" => "%{severity}"}
overwrite => ["message"]
}
}
elseif [type] == "H3C" {
grok {
match => { "message" => "<%{BASE10NUM:syslog_pri}>%{SYSLOGTIMESTAMP:timestamp} %{YEAR:year} %{DATA:hostname} %%%{DATA:vvmodule}/%{POSINT:severity}/%{DATA:digest}: %{GREEDYDATA:message}" }
remove_field => [ "year" ]
add_field => {"severity_code" => "%{severity}"}
overwrite => ["message"]
}
}
elseif [type] == "HUAWEI" {
grok {
match => { "message" => "<%{BASE10NUM:syslog_pri}>%{SYSLOGTIMESTAMP:timestamp} %{DATA:hostname} %%%{DATA:ddModuleName}/%{POSINT:severity}/%{DATA:Brief}:%{GREEDYDATA:message}"}
match => { "message" => "<%{BASE10NUM:syslog_pri}>%{SYSLOGTIMESTAMP:timestamp} %{DATA:hostname} %{DATA:ddModuleName}/%{POSINT:severity}/%{DATA:Brief}:%{GREEDYDATA:message}"}
remove_field => [ "timestamp" ]
add_field => {"severity_code" => "%{severity}"}
overwrite => ["message"]
}
}
#mutate {
# gsub => [
# "severity", "0", "Emergency",
# "severity", "1", "Alert",
# "severity", "2", "Critical",
# "severity", "3", "Error",
# "severity", "4", "Warning",
# "severity", "5", "Notice",
# "severity", "6", "Informational",
# "severity", "7", "Debug"
# ]
# }
}
output{
stdout {
#将日志输出到当前终端上显示
codec => rubydebug
}
#同时也发送到elasticsearch
elasticsearch {
index =>
"syslog-%{+YYYY.MM.dd}"
hosts => ["192.168.23.12:9200"]
}
}
3、切换到logstash的bin目录,检测配置文件是否有错。显示OK则表示配置文章没有问题
cd /usr/share/logstash/bin/
./logstash --path.settings /etc/logstash/ -f /etc/logstash/conf.d/switch.conf --config.test_and_exit
# Sending Logstash's logs to /var/log/logstash which is now configured via log4j2.properties
# Configuration OK