数学
文章平均质量分 60
zhanglehes
这个作者很懒,什么都没留下…
展开
-
g2o -- circle_fit代码解析
***/class VertexCircle : public g2o::BaseVertex { // 顶点包含3个参数public:void setToOriginImpl() override { // 设置顶点的初始值void oplusImpl(const double* update) override { // 增量更新函数/***/原创 2024-03-05 11:15:57 · 418 阅读 · 0 评论 -
g2o -- curve_fit代码解析
***/class VertexParams : public g2o::BaseVertex { // 它包含三个参数public:void setToOriginImpl() override {} // 设定参数的原始值void oplusImpl(const double* update) override { // 增量更新函数,调整当前参数的值// 构造参数增量/***/原创 2024-03-04 20:02:23 · 505 阅读 · 0 评论 -
g2o--icp代码解析
概要个人理解Icp是一种location算法。我们先将全局的事物特征化,提取出特征点。在求解过程中,将观察的的图像,同样进行特征化。将全局点与当前特征点进行匹配,就可以求得观察者当前的位姿。Icp算法通常分为粗匹配和精细匹配两部分。粗匹配是将观察特征点移动到对应全局特征点的附近,而精细匹配这是将一个一个对应的特征点,使用最小二乘优化进行调整。在精细匹配的过程中,特征点对的选取也很重要,icp是一套迭代的算法,每次变换后都需要重新选取特征点对。原创 2024-01-29 17:54:17 · 560 阅读 · 0 评论 -
g2o--ba代码解析
g2o是常用的图优化理论c++库,其自带了很多example讲解如何使用该库文件,本文分析其中ba的示例代码。所谓的图优化,就是把一个常规的优化问题,以图(Graph)的形式来表述。在图中,以顶点表示优化变量,以边表示观测方程。于是总体优化问题变为n条边加和的形式边是约束在具体编写g2o代码时,我们也需要明确哪些是顶点(优化项),哪些是边(约束项)。原创 2024-01-25 17:45:03 · 507 阅读 · 0 评论 -
向量的点积与叉积
三维空间中有两个向量,它们的夹角为θ假设单位向量n垂直于两个向量形成的平面(满足右手螺旋法则)原创 2023-04-24 10:14:43 · 202 阅读 · 1 评论 -
欧拉角,四元数,旋转矩阵以及它们的转换关系
欧拉角,四元数,旋转矩阵以及它们的转换关系原创 2023-04-19 09:37:40 · 473 阅读 · 0 评论 -
python numpy库简介
numpy库是python语言处理矩阵运算常用的工具,本文对其常用命令进行简单的介绍。zeros,ones,empty[初始化数组]ravel[多维数组转换为一维数组]argwhere[满足条件的索引]reshape[改变列表的结构]delete[删除任意行|列]shape[数组的维度]array[创建数组]mean[求取平均值]diff[计算差值]原创 2023-03-24 17:53:47 · 173 阅读 · 0 评论 -
朴素贝叶斯
前文介绍了贝叶斯公式基础以及在统计领域的基本应用,本文将介绍它的一种新的转换形式,以及在机器分类领域的应用。原创 2022-12-23 12:09:43 · 463 阅读 · 0 评论 -
贝叶斯基础
举个例子,如果A和B发生的概率都是50%,但两者是强相关的,A出现时B必然出现,那么P(A and B)=50%;从机器学习的角度,从全局无法知道事件(A)发生的概率,但是如果能确认一些事情发生,如事件(B),那么就可以更新事件(A)发生的概率,从而逼近真实值。解答:首先P(A)=20%, P(B)=50%, P(C)=30%,另一个条件,假设缺陷产品的事件为D,则P(D|A)=2%, P(D|B)=1%, P(D|C)=3%, 问题是P(B|D)边际概率是一个事件的概率,与另一个变量的结果无关。原创 2022-12-21 15:08:34 · 947 阅读 · 0 评论