三角函数公式推导2

三角函数公式推导2
5)若转而讨论对数函数ln x,它在x→+0时趋向于-∞,所以仿照前例,我们只能考察函数.
f(x)=ln(1+x)
并且依x的幂展开它。那时任意导数的普遍公式116,3)

       k-1

(k) (-1) (k-1)!
f (x)=
k
(1+x)

    (k)     k-1

f(0)=0, f (0)=(-1) (k-1)!
注;记号0!我们永远理解为1
由此
2 3 n
x x n-1 x n
ln(1+x) =x- + -…+ (-1) +o(x )
2 3 n

6)今设f(x)=arc tg x, 我们在莱伯尼兹公式例题118.4)中已得到它的导数在x=0时的数值:
(2m) (2m-1) m-1
f(x) (0)=0, f(x) (0)=(-1) (2m-2)!
根据戴劳公式(11),可得
(n)
f`(0) f``(0) 2 f```(0) 3 f (0) n n
arc tg x=f(0)+ x+ x + x +…+ x +o(x )
1! 2! 3! n!

             1-1  (2*1-2)!   0   2    2-1  (2*2-2)!  3      n-1 (2*n-1)! n    n 

arc tg x= arc tg 0 + (-1) x+ x +(-1) x +…+(-1) x + o(x )
1! 2! 3! n!

于是它的展开式可表示为
3 5 2m-1
x x m-1 x 2m
arc tg x=x- + -…+ (-1) +o(x )
3 5 2m-1
6a)今设f(x)=arc ctg x, 我们在莱伯尼兹公式例题118.4a)中已得到它的导数在x=0时的数值:
(2m) (2m-1) m-1
f(x) (0)=0, (当2m为偶数时)f(x) (0)=(-1) (2m-2)!, (当2m-1为奇数时)
根据戴劳公式(11),可得
(n)
f`(0) f``(0) 2 f```(0) 3 f (0) n n
arc ctg x=f(0)+ x+ x + x +…+ x +o(x )
1! 2! 3! n!

              1  (2*1-2)!    0   2    2  (2*2-2)!   3      m-1  (2*m-1)!  n  n 

arc ctg x= arcctg 0 + (-1) x+ x +(-1) x +…+(-1) x + o(x )
1! 2! 3! n!

于是它的展开式可表示为
3 5 2m-1
x x m x 2m
arcc tg x=-x+ - -…+ (-1) +o(x )
3 5 2m-1

6b)今设f(x)=arc sin x, 我们在莱伯尼兹公式例题118.5)中已得到它的导数在x=0时的数值:
(2m) (2m-1) m-1 2 2 2 m-1 2
f (0)=0, f (0)=(-1) 1 3 …(2m-1) =(-1) [(2m-1)!!]
于是它的展开式可表示为
(n)
f`(0) f``(0) 2 f```(0) 3 f (0) n n
arc sin x=f(0)+ x+ x + x +…+ x +o(x )
1! 2! 3! n!
2 2 2
1-1 (2
1-1)!! 0 2 2-1 (22-1)!! 3 (2n-1)!! n n
arc sin x= arc sin 0 + (-1) x+ x +(-1) x +…+ x + o(x )
1! 2! 3! n!

                                                         2
             (2*1-1)!!     0   2    2!!* 2!!   3      (2*n-1)!   n    n 

arc sin x= arc sin 0 - x+ x - x +…+ x + o(x )
1! 2! 2!! 3!! n!

于是它的展开式可表示为
3 5 2m-1
2!! x 4!!x m-1 (2m-2)!! x 2m
arc sin x=x- + -…+(-1) +o(x )
3!! 5!! (2m-1)!!
注note;5!!=135,6!!=246
6c)今设f(x)=arc cos x, 我们在莱伯尼兹公式例题118.5b)中已得到它的导数在x=0时的数值:
(2m-1) (2m) m 2 2 2 m 2
f (0)=0, f (0)= (-1) 3 *5 …(2m-3) =(-1) [(2m-3)!!]
于是它的展开式可表示为
(n)
f`(0) f``(0) 2 f```(0) 3 f (0) n n
arc cos x=f(0)+ x+ x + x +…+ x +o(x )
1! 2! 3! n!

                           2                          2            
               0    (2*1-1)!!  2    0  3        (2*n-1)!!   n     n 

arc cos x= arc cos 0 + x+ x + x +…+ x + o(x )
1! 2! 3! n!

                           2                              2
              0      (2*1-1)!!  2   0  3  3!!3!!  4      (2*n-1)!   n     n 

arc cos x= arc cos 0 + x- x + x - x +…+ x + o(x )
1! 2! 3!! 3!!4!! n!

于是它的展开式可表示为

         2           3      5                       2m
        x        3!! x    5!!x             m  (2m-1)!! x      

arc cos x=1- + - -…+(-1) +o(x )
2!! 4!! 6!! (2m)!!
注note;5!!=135,6!!=246

7)对于函数f(x)=tg x,戴劳公式的系数构成的规律是较繁复的。但要写出它的为首几项并不困难。例如,因为
2 2
1 2sin x 1+2sin x Ⅳ 2+2sin x
f`(x)= , f(x)= , f(x)=2* , f (x)=8sin x
2 2 4 5
cos x cos x cos x cos x

故f(0)=0,f`(0)=1,f``(0)=0,f```(0)=2,f (0)=0,
根据戴劳公式(120a)
3
x 4
tg x=x+ +o(x )或
3

     3       5       7                 2m-1
   2x     4x       6x        m-1  (2m) x           n

tg x=x- + - +…-(-1) + o(x ) (-π/2<x<π/2)
3 5 7 2m-1

例如
tg π/4=1
3
0.785339
tg 0.785339=0.785339+ =1.0928
3
例如
tg π/4=1
3 5 7
20.785339 40.785339 60.785339
tg 0.785339=0.785339+ - + =1.0928
3 5 7
利用已知的展开式,就已经可以不用求导数而直接写出较繁复的函数的展开式。例如,前一公式就可以从sin x及cos x的展开式而求得。举几个新的例子,在这时一切x的幂值到指定的幂包括在内为止,我们都要精确计算出来,而更高级的幂(没有写出来的)自然是包括在余项内。
7a)对于函数f(x)=ctg x,戴劳公式的系数构成的规律是较繁复的。但要写出它的为首几项并不困难。例如,因为
2 2
1 2cos x 1+2cos x Ⅳ 2+2cos x
f`(x)=- , f(x)=- , f(x)=-2
, f (x)=-8cos x
2 2 4 5
sin x sin x sin x sin x

故f(π/2)=1,f`(π/2)=-1,f``(π/2)=0,f```(π/2)=-2,f (π/2)=0,
根据戴劳公式(120a)

    3
   x        4

ctg x=x- +o(x )或
3

     3       5       7                 2m-1
   2x     4x       6x        m-1  (2m) x           n

ctg x=x- + - +…-(-1) + o(x ) (0<x<π)
3 5 7 2m-1

例如
ctg π/4=1
3
0.785339 3
ctg 0.785339=0.785339- (0.78533-1.75) =0.93027
3
例如
ctg π/4=1
3 5 7
20.785339 40.785339 6*0.785339
ctg 0.785339=0.785339+ - + =1.0928
3 5 7

     sin x             3

8)写出函数e 的展开式至x 。根据1)
sinx 1 2 1 3 3
e =1+sin x+ sin x + sin x + o(sin x )
2 6

sinx 1 2 1 3 3
e =1+sin x+ sin x + sin x + o(x )
2 6
3 3
注:原来应写成o(sin x),但由于x与sin x是等价无穷小,所以写成o(x )是完全一样的。
但依2)
1 3 4
sin x=x- x + o(x )
6
于是

sin x 1 3 1 2 1 3 3
e =1+(x- x )+ x + x + o(x )
6 2 6
3
含x 的项互相消去,故最后得

sin x 1 2 3
e =1+x+ x + o(x )
2
类似地

tg x 1 2 1 3 3
e =1+x+ x + x + o(x )
2 2
6
9)写出函数ln cos x的展开式至x 的项。根据5)

                         1         2   1         3           3

ln cos x=ln[1+(cos x-1)]=(cos x-1)- (cos x-1) + (cos x-1) + o((cos x-1) )
2 2

                         1         2   1         3     6

ln cos x=ln[1+(cos x-1)]=(cos x-1)- (cos x-1) + (cos x-1) + o(x )
2 2
2
注:因为1-cos x与x 同阶,见无穷小及无穷大的分级中的无穷小的尺度,
3 6
故o((cos x-1) )同时就是o(x )
在这时,由于3),

      1   2      1   4    1   6      7

cos x-1=- x + x - x + o(x )
2 24 720
由此
1 2 1 4 1 6 1 1 4 1 6 1 1 6 6
ln cos x-1=(- x + x - x )- ( x - x )+ (- x )=o(x )
2 24 720 2 4 24 3 8
或在化简后
1 2 1 4 1 6 6
ln cos x-1=- x - x - x + o(x )
2 12 45
类似地

       2     1   3    3    5     5

ln (x+ 1+x =x- x - x + o(x )
6 40

sin x 1 2 1 4 1 6 6
ln =- x - x - x + o(x )
x 6 180 2835
一切这些不直接利用戴劳公式而得出的展开式,当然也可以由戴劳公式求得,并且由于函数的这种展开式的唯一性,也就恰好有着同样的系数。
附注, 因为在这里所考察的函数在点x=0的邻域内都有着任何阶的导数,所以我们在公式(11)内对于n的选取不受拘束,就是可以继续展开这些函数直至x的任意次幂。
10)若f(x)=tan x,则
根据导数除法运算规则
π
sin(x+k* )
(k) π 2 (k)
f (x)=tan(x+k* )=( )
π
cos(x+k* )
2

       π    (k)      π              π      (k)      π     

cos(x+k* ) sin (x+k* )- sin (x+k* ) cos (x+k* )
2 2 2 2

                                 k
                           π   2
                  [cos(x+k*     )]

,于是 2
(2m)
f (0)=tan mπ=0

(2m-1)
f (0)=tan mπ=

       π    (2m-1)      π              π    (2m-1)      π     

cos(x+k* ) sin (x+k* )- sin (x+k* ) cos (x+k* )
2 2 2 2

                                 2m-1
    π    2
                  [cos(x+k*     )]
                           2

因此,在公式(120)内令n=2m,就有

tan x=x+

      π    (2*1-1)      π              π    (2*1-1)      π     

cos(x+k* ) sin (x+k* )- sin (x+k* ) cos (x+k* )
2 2 2 2

                                  1
         π   2
                 1! [cos(x+k*     )]
                            2
      π    (2*2-1)      π              π    (2*2-1)      π     

cos(x+k* ) sin (x+k* )- sin (x+k* ) cos (x+k* )
2 2 2 2
+0-
2
π 2
3! [cos(x+k* )]
2
π (2m-1) π π (2m-1) π
cos(x+k* ) sin (x+k* )- sin (x+k* ) cos (x+k* )
m-1 2 2 2 2
(-1)
2m-1
π 2
(2m-1)! [cos(x+k* )]
2

           3    2                     5  
          x                         x      2
          3!          -1             5!           

tan x= x+(1 - )- ( + )
2 2 4 2 4 2
x x x
2! 4! 4!
2m+1
x 2
m-1 2m 1 2m-1 ( 2m+1)!
+…-(-1) [ (-1) - (-1) ( ) ]
2m 2m-2 2m 2m-1
x 2 x 2
2m! 2m!
11)若f(x)=cot x,则
根据导数除法运算规则
π
cos(x+k* )
(k) π 2 (k)
f (x)=cot(x+k* )=( )
2 π
sin(x+k* )
2

       π    (k)      π              π      (k)      π     

sin(x+k* )cos (x+k* )- cos (x+k* ) sin (x+k* )
2 2 2 2

                                 k
                           π   2
                  [sin(x+k*     )]
                           2

(2m)
f (0)=cot mπ=0

(2m-1)
f (0)=cot mπ=

       π    (2m)      π            π      (2m)     π     

sin(x+k* ) cos (x+k* )- cos(x+k* ) sin (x+k* )
2 2 2 2

                                  2m         
 π   2
                  [sin(x+k*     )]
                           2

因此,在公式(120)内令n=2m,就有

cot x=x+

      π    (2*1-1)      π           π     (2*1-1)      π     

sin(x+k* ) cos (x+k* )- cos(x+k* ) sin (x+k* )
2 2 2 2

                                  2m

π 2
[sin(x+k* )]
2

      π    (2*2-1)      π           π    (2*2-1)      π     

sin(x+k* ) cos (x+k* )- cos(x+k* ) sin (x+k* )
2 2 2 2
+0-
2m
π 2
[sin(x+k* )]
2
π (2m-1) π π (2m-1) π
sin(x+k* ) cos (

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值