三角函数公式推导1

这篇博客详细介绍了三角函数的泰勒级数推导过程,涉及戴劳公式、拉格朗日公式和有限差分法。通过泰勒展开式,展示了如何将三角函数表示为幂级数,包括正弦、余弦、正切等的泰勒展开式,并给出了余项的表达方式。此外,还讨论了泰勒级数的适用条件及其在近似计算中的应用。
摘要由CSDN通过智能技术生成

三角函数公式推导1
根据戴劳公式(120a)
3
x 4
tg x=x+ +o(x )或
3
3 5 7 2m-1
2x 4x 6x m-1 (2m) x n
tg x=x- + - +…-(-1) + o(x ) (-π/2<x<π/2)
3 5 7 2m-1

  3
   x        4

ctg x=x- +o(x )或
3

     3       5       7                 2m-1
   2x     4x       6x        m-1  (2m) x           n

ctg x=x- + - +…-(-1) + o(x ) (0<x<π)
3 5 7 2m-1

第四部分,泰勒级数推导过程数学流程图
计算三角函数调用泰勒公式

  说明泰勒级数       引用瓦利斯公式       推导二项式系数   

初等函数的展开,推导泰勒公式的前提 最后得到计算三角函数的近似公式8

调用戴劳公式和有限差分法 最后得到计算三角函数的近似公式9
. (注:有限差分法是推导泰勒公式所使用的的方法)
模拟计算机计算开方公式

戴劳公式的推导 首先调用拉格郎奇公式 引用单方导数概念 推导出近似公式
其次调用增量公式
再调用任意阶导数的普遍公式和莱布尼兹公式
推导出计算三角函数的插值法(模拟计算机用)
推导出计算三角函数的公式4

   推导出惠更斯公式   推导出计算三角函数的公式2
   推导出插值法
   调用数e的近似计算法
   推导出契贝塞夫(П.Л.Чебышев)法则    推导出计算三角函数的公式3
   推导出插值法     推导出计算三角函数的拉格朗奇插值法
                     推导出计算三角函数的带余项的拉格朗奇插值法
                     推导出计算三角函数的埃尔密特公式插值法

莱布尼兹公式的推导 推导任意阶导数的普遍公式 推导莱布尼兹公式
引用求导数的简单法则

拉格郎奇公式的推导 调用微分是近似公式的来源中的近似公式

                    推导出计算幂函数的近似方法。模拟计算机用

增量公式的推导 调用无穷小及无穷大的分级中的无穷小的比较

微分是近似公式的来源中的近似公式的推导

调用无穷小及无穷大的分级中的等价无穷小

调用可微性与导数存在之间的关系

最后得到计算函数的近似公式

无穷小及无穷大的分级的推导 先推导无穷小的比较 再推导无穷小的尺度

  再调用极限理论的推广
     再推导等价无穷小     再推导主部的分出    最后的到计算函数的近似公式

微分的定义 推导出可微性与导数存在之间的关系
调用无穷小及无穷大的分级中的等价无穷小和主部的分出

                 推导出计算三角函数的公式1

无穷级数欧拉常数 推导出用对数函数计算sinx,cosx的公式
级数的乘法 推导出用sinx,cosx级数计算tgx,ctgx的公式
.
第四部分,泰勒级数数学理论描述
1.上面电路实现的功能是表示任意角度的正弦值。
2.正弦值等于直角三角形的角对应的直角边和斜边的比值。
sinα=y/r
余弦值等于直角三角形的角相邻的直角边和斜边的比值
cosα=x/r
正切值等于直角三角形的角所对的直角边和相邻的直角边的比值
tanα=y/x
正割值等于斜边和直角三角形的角相邻的直角边的比值
secα=r/x
余割值等于直角斜边和直角三角形的角对应的直角边的比值
cscα=r/y
余割值等于直角斜边和直角三角形的角对应的直角边的比值
cscα=r/y
余切值等于直角三角形的角相邻的直角边和所对的直角边的比值
cotα=x/y
3.在直角三角形中,两个直角边x,y的平方和等于斜边的平方
2 2 2
x +y =r
4.所以正弦值可以表示为

              2     2
   sinα=y/    x   +y

5.如图1所示,h是垂直于三角形斜边的高,它把斜边分成r1,r2

2 2 2 2 2 2 2 2
h +r1 =y r1 =y -h r1= y -h

2 2 2 2 2 2 2 2
h +r2 =x r2 =x -h r2= x -h

∵r1+r2=r

2 2 2 2 2 2 2 2 2 2
∴x +y =(r1+r2) x + y =( y -h + x -h ) (1)

∵sinα=h/x


2 2
h/x=y/ x +y


2 2
h/x=y*x/ x +y (2)

                   图1

6.将⑵代入⑴得

2 2 2 2 2 2 2 2 2 2 2 2
x +y = y -y *x /(x +y ) + x -y *x /(x +y )

2 2 2 2 2 2 2 2 2 2 2
r = y -y *x /(x +y ) + x -y *x /(x +y ) (3)

4.在单位圆中,直径是1,也就是上面的斜边是1,所以⑶可以表示为

           2    2  2    2     2              2    2    2   2     2     

y -y *x /(x +y ) + x -y *x /(x +y ) =1
{
2 2
x +y =1

        sinα=y,   cosα=x,   tanα=y/x

5.用直流电压DCXV,100mA表示X,用直流电压DCYV,100mA表示Y,用加法器,减法器,开方,乘法器,电压跟随器可以表示上式。
6.在上面二元二次方程中,知道x,就会得到y值,知道y,就会得到x值。
7.上面电路中,x值不断变化,它是余弦值,查《数学用表》,可以得到它的余弦角角度。
上面电路中,y值不断变化,它是正弦值,查《数学用表》,可以得到它的正弦角角度。
上面电路中,y/x值不断变化,它是正切值,查《数学用表》,可以得到它的正切角角度。
上面电路中,1/x值不断变化,它是正割值,查《数学用表》,可以得到它的正割角角度。
上面电路中,1/y值不断变化,它是余割值,查《数学用表》,可以得到它的余割角角度。
上面电路中,x/y值不断变化,它是余切值,查《数学用表》,可以得到它的余切角角度。
8.已知一个角的角度,计算这个角的三角函数可以采用微积分里面的泰勒级数。泰勒展开式的推导详细情况可见初等函数的展开。根据泰勒展开式,可得下面的公式

                                              (n)
          f`(x  )          f``(x  )        2     f   (x  )      n

f(x)=f(x )+ 0 (x-x )+ 0 (x-x ) +…+ 0 (x-x ) +r (x) (3)
0 1! 0 2! 0 n! 0 n
这个展开式描述的一个函数f(x)等于
2 (n)
x x x x n
e =1+ + +…+ + o(x ) (11)
1! 2! n!

            3                2                    2m-1
           x              x                m-1   x          2m

sin x =x- + -…+ (-1) +o(x ) (12)
3! 5! (2m-1)!

            2                4                   2m
           x              x                m    x         2m+1

cos x =1- + -…+ (-1) +o(x ) (13)
2! 4! (2m)!

 m         m(m-1)    2        m(m-1)...(m-n+1)   n     n

(1+x) =1+mx+ x +…+ x +o(x )
12 12…n

             2     3                n
           x      x         n-1    x           n    

ln(1+x) =x- + -…+ (-1) +o(x )
2 3 n

             3     5                 2m-1
           x      x          m-1   x         2m   

arc tg x=x- + -…+ (-1) +o(x )
3 5 2m-1

             3     5               2m-1
           x      x          m   x         2m   

arc ctg x=-x+ - +…- (-1) +o(x )
3 5 2m-1

             3                  
           x       4

tg x=x+ +o(x )
3

 sin x          1    2            3

e =1+x + x + o(x )
2

 tg x         1    2      1      3         3

e =1+x+ x + x + o(x )
2 2!

           1    2       1     4      1      6      6

ln cos x =- x - x - x + o(x )
2 12 45

                   3         5           
       2          x        3x         5     

ln(x+ 1+x ) =x- + +o(x )
6 40

  sin x      1    2       1     4      1      6      6

ln =- x - x - x + o(x )
x 6 180 2835

            3                2                    2m-1
           x              x                m-1   x          2m

sin x =x- + -…+ (-1) +o(x ) (12)
3! 5! (2m-1)!

            2                4                   2m
           x              x                m    x         2m+1

cos x =1- + -…+ (-1) +o(x ) (13)
2! 4! (2m)!
sinh / 双曲正弦:
x -x
e -e
shx=
2
cosh / 双曲余弦:
x -x
e +e
shx=
2

            3                2                    2m-1
           x              x                      x           2m

sh x =x+ + +…+ +o(x ) (12)
3! 5! (2m-1)!

            2                4                   2m
           x              x                     x         2m+1

ch x =1+ + +…+ +o(x ) (13)
2! 4! (2m)!

可设
x -x
e + e
y=
2


2x x
e -2y*e +1=0

x 2
e =y± y -1

            2

x =ln(y± y -1 )

可设
x -x
e -e
y=
2


2x x
e -2y*e -1=0

x 2
e =y± y +1

            2

x =ln(y± y +1 )

tanh / 双曲正切:tanh(x) = sinh(x) / cosh(x)=[e^x - e^(-x)] / [e^x + e^(-x)]
coth / 双曲余切:coth(x) = cosh(x) / sinh(x) = [e^x + e^(-x)] / [e^(x) - e^(-x)]
sech / 双曲正割:sech(x) = 1 / cosh(x) = [e^x - e^(-x)]/2
csch / 双曲余割:csch(x) = 1 / sinh(x) = [e^x + e^(-x)]/2
tanα= sinα/ cosα ch(x±y)=ch xch y±sh xsh y
secα=1/ cosα sh(x±y)=sh xch y±ch xsh y
cscα=1/ sinα
cotα= cosα/ sinα

x+y -x-y x -x y -y x -x y -y
e +e e + e e + e e - e e - e
= * + *
2 2 2 2 2

             3     5                 2m-1
           x      x          m-1   x         2m   

arc tg x=x- + -…+ (-1) +o(x ) (15)
3 5 2m-1

                                    2m-1
           1      1          m-1   1         2m   

π/4=arc tg 1=1- + -…+ (-1) +o(x ) (16)
3 5 2m-1

   1       1          1

e=1+ + +…+ +…
1! 2! n!

        2      3
       x      x           1     n+1

ln(1+x)=x- + -…+(-1) x +… (-1<x≤1)
2 3 n+1

 m        m(m-1)  2     m(m-1)...(m-n+1)   n

(1+x) =1+mx+ x +…+ x +… (-1<x<1)
2! n!

n 1 1 k-1 1
=1- + -…+(-1) +…
n+1 n n k-1
n

第五部分三角函数泰勒级数
9.对数对应的泰勒级数如下
对数泰勒展开式的推导详细情况可见初等函数的展开
泰勒级数推导。展开函数成幂级数,泰勒级数。
我们已知形如
∽ n 2 n
∑ a x =a +a x+a x +…+a x +…
0 n 0 1 2 n

的x的乘幂展开的幂级数。 (1)
(注解:也就是说幂函数数列的从0到正无穷的各项之和等于的一次方,二次方直到n次方的和)如果除去“处处发散”的级数,则对每一个这样的级数说来,存在着以点x=0为中心,从-R到R(这儿收敛半径R>0,但也可以是无穷)的收敛区间。这个区间是否包含端点在内,要看情况怎样来决定。
考虑以二项式x-x (代替x)的乘幂展开的更普遍形状的幂级数:
0

∽ n 2 n
∑ a (x-x ) =a +a (x-x ) +a (x-x ) +…+a (x-x ) +…
0 n 0 0 1 0 2 0 n 0

这种级数跟形如(1)的级数没有本质上的差别,因为用一个简单的变数替换:
x-x =y(只有变数表示法上的不同)就可把它化成级数(1)。
0
对于级数(2)说来,如果它不是:"处处发散"的,也有收敛区间,
但这次中心是点x -R到x +R。
0 0

它的端点,跟级数(1)的情况一样,可以属于,但也可以不属于区间内。在以后几节中我们要详细地研究幂级数的性质,它们在许多方面都与多项式相似。多项式是幂级数的段(部分和数),这使幂级数成为近似计算的便利工具。由于这个事实,
把预先给定的函数依x-x 的乘幂(特别情形,依x的乘幂)展开的可能性的问题,
0
亦即把函数表示成型(2)或(1)的级数和数形状的可能性问题,就获得很大的重要性。在这儿我们要研究初等函数的如此的展开式,并且在[122-124]戴劳公式及有限差分法中,详细研究过泰勒公式给我们打开一条通向解决所提出的问题的道路。
戴劳公式及有限差分法见戴劳公式推导页介绍
事实上,假定所考虑的函数f(x)在区间[x ,x +H]或x -H,x
0 0 0 0
上具有各级微商。(因而它们都是连续的)。于是像我们在第124目中已经看到的,于是像我们在第124目中已经看到的,对于在这区间上所有的x值,即有公式:

                                              (n)
          f`(x  )          f``(x  )        2     f   (x  )      n

f(x)=f(x )+ 0 (x-x )+ 0 (x-x ) +…+ 0 (x-x ) +r (x) (3)
0 1! 0 2! 0 n! 0 n

其中余项r (x)可以表示成第124目中所指出的形式中的任一个。
n
同时我们可以取n任意大,既是,把这展开式进行到x-x 的任意高的乘幂。
0
这就自然地引出无穷展开式的想法:

                                              (n)
          f`(x  )          f``(x  )        2     f   (x  )      n

f(x)=f(x )+ 0 (x-x )+ 0 (x-x ) +…+ 0 (x-x ) +r (x) (4)
0 1! 0 2! 0 n! 0 n

这种级数-它跟收敛与否及是否具有和数f(x)无关-叫做函数f(x)的泰勒级数。它有(2)的形状,并且它的系数:

                                              (n)
           f`(x  )          f``(x  )             f   (x  )    

a =f(x ),a = 0 , a = 0 ,…, a = 0
0 0 1! 2 2! n n!

叫做泰勒级数。因为f(x)与泰勒级数n+1项和数之间的差数,由于(3),恰好是

r (x)
n
所以显然;在某一x值时,展开式(4)实际上成立的必要充分条件是,在这个x值时,泰勒公式的余项r (x)随着n的增大而趋于0;
n
lim r (x)=0 (5)
n→∞ n
这等式是否成立,以及在怎样的x值时这等式成立,在研究这些问题时,
依赖于n的余项r (x)的各种形式对我们是有用的。
n
常常要讨论跟x =0与函数f(x)直接依x的乘幂展开成级数
0
(n)
f`(0) f``(0) 2 f (0) n
f(x)=f(0)+ x + x +…+ x (6)
1! 2! 0 n!

注;这级数通常叫做马克劳任级数,参看第一卷121目和123目的脚注。的情形;这级数具有(1)的形状,系数为:

                                            (n)
           f`(0 )           f``(0)             f   (0)    

a =f(0),a = , a = ,…, a = (7)
0 1 1! 2 2! n n!

现在更详细地写出合适于这一特别假定:

x =0[124]的余项r (x)
0 n

拉格朗日形式:
(n+1)
f (θx) n+1
r (x)= x (8)
n (n+1)!
歌西形式:
(n+1)
f (θx) n n+1
r (x)= (1-θx) x (9)
n n!
并且,关于因数θ只知道它包含在0与1之间,但它在x或n改变时(甚至在从这一形式换成另一形式时)可以跟着改变。现在将一些具体的展开式。
392、展开指数函数、基本三角函数及其他函数成为级数。首先证明下面的简单定理,它直接包含了一系列的重要情形。如果函数f(x)在区间[0,H]或-H,0上具有各级微商,并且当x在所给区间上变化时,所有这些微商的绝对值受囿于相同一个数:
n
|f (x)|≤L (10)

(这儿L不依赖于n),则在整个区间上展开式(6)成立。事实上,取拉格朗日形式的余项r (x)[见18],
n
由于(10),我们有

             (n+1)                         n+1  
         | f     (θx) |      n+1        H     

| r (x) |= |x| ≤L*
n (n+1)! (n+1)!

像我们在35,1)中见过的,当n无限增加时,表达式
n+1
H

(n+1)!
趋于0;但是,这[由于355,6°]也可以从级数。

         n+1  
 ∞    H     

1+ ∑
n=0 (n+1)!

的收敛性推出[361,2)(a)]。但在这样的情形下,r (x)就具有极限0,这就证明了我们的断言。
n
(a)可把这定理应用于在任何区间[-H,H]上的下列函数:
x
f(x)=e ,sin x,cos x
因为它们的微商分别等于
(n) x
f (x)=e ,
π
sin(x+n* ),
2

     π

cos(x+n* ),
2
x H
并且在这区间上,函数e 的各级微商的绝对值受囿于数e ,
而函sin x与cos x的各级微商的绝对值受囿于1. 因为在125ÿ

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值