凸包入门

凸包问题:一组平面上的点,求一个包含所有点的最小的凸多边形。
理解:地面上放置若干固定的木桩,用一根绳子把它们圈起来,并且为凸边形
算法:Graham-Scan,时间复杂度O(nlgn);
实例:HDU1392

//Date:   2015.05.31
//Time:   46ms
//Memory: 1620k

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;

int n;
const int MAXN=100;
struct Node{
    int x,y;
}nodes[MAXN],stacks[MAXN];

double Distance(Node a,Node b){
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double Cross(Node a,Node b,Node c){
    return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
}
bool cmp_Y(const Node &a, const Node &b){
    if(a.y==b.y)
        return a.x<b.x;
    else
        return a.y<b.y;
}
bool cmp_P(const Node &a, const Node &b){
    int m=Cross(nodes[0],a,b);
    if(m)
        return m>0 ? true:false;
    else
        return Distance(nodes[0],a)-Distance(nodes[0],b)<=0 ? true:false;
}
double ConvexHull(){
    int i,top;
    double c;
    if(n==1)
        return 0;
    else if(n==2)
        return Distance(nodes[0],nodes[1]);
    else{
        sort(nodes,nodes+n,cmp_Y);
        sort(nodes+1,nodes+n,cmp_P);
        stacks[0]=nodes[0];
        stacks[1]=nodes[1];
        stacks[2]=nodes[2];
        top=2;
        for(i=3;i<n;i++){
            while(Cross(stacks[top-1],stacks[top],nodes[i])<=0)
                top--;
            stacks[++top]=nodes[i];
        }
        c=0;
        for(i=1;i<=top;i++)
            c += Distance(stacks[i-1],stacks[i]);
        c += Distance(stacks[top],nodes[0]);
        return c;
    }
}
int main(){
    int i;
    double circumference;
    while(scanf("%d",&n),n){
        for(i=0;i<n;i++)
            scanf("%d%d",&nodes[i].x,&nodes[i].y);
        circumference=ConvexHull();
        printf("%.2f\n",circumference);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值