Android获得全局进程信息以及进程使用的内存情况

Android获得全部进程信息,并获得该进程使用的内存情况。

package zhangphil.process;

import java.util.List;
import android.os.Bundle;
import android.os.Debug.MemoryInfo;
import android.widget.TextView;
import android.app.Activity;
import android.app.ActivityManager;
import android.app.ActivityManager.RunningAppProcessInfo;
import android.content.Context;

public class MainActivity extends Activity {

	@Override
	protected void onCreate(Bundle savedInstanceState) {
		super.onCreate(savedInstanceState);
		setContentView(R.layout.activity_main);

		TextView tv = (TextView) findViewById(R.id.textView);

		ActivityManager activityManager = (ActivityManager) getSystemService(Context.ACTIVITY_SERVICE);

		String all = "";
		try {
			List<RunningAppProcessInfo> list = activityManager
					.getRunningAppProcesses();

			for (int i = 0; i < list.size(); i++) {
				RunningAppProcessInfo p = list.get(i);
				
				String info = "第 " + (i + 1) + " 个进程\n";
				info += "名称:" + p.processName + "\n";
				info += "id:" + p.pid + "\n";
				info += "用户id:" + p.uid + "\n";
				// 该进程使用的内存情况,MemoryInfo单位是KB
				int[] memoryPid = new int[] { p.pid };
				MemoryInfo[] memoryInfo = activityManager
						.getProcessMemoryInfo(memoryPid);
				// 进程内存使用情况,单位:MB
				int memSize = memoryInfo[0].dalvikPrivateDirty;
				String count = "";
				if (memSize < 1024)
					count = memSize + " KB";
				else
					count = memSize / 1024 + " MB";

				info += "使用的内存(dalvikPrivateDirty): " + count + "\n";
				info += "重要级:" + p.importance + "\n";

				all = all + info + "\n";
			}

		} catch (Exception e) {
			e.printStackTrace();
		}

		tv.setText(all);
	}
}

需要在AndroidManifest.xml添加权限:

<uses-permission android:name="android.permission.GET_TASKS" />

MainActivity.java需要的activity_main.xml文件:

  <ScrollView  xmlns:android="http://schemas.android.com/apk/res/android"
        android:layout_width="match_parent"
        android:layout_height="match_parent" >

         <TextView
        android:id="@+id/textView"
        android:layout_width="match_parent"
        android:layout_height="match_parent" />
       
    </ScrollView>


### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhangphil

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值