1,专家评价:把结果拿给专家坐判断,太耗人力
2,熵:计算各个类的熵,根据聚类结果里面各个数据分类的分布,需要数据事先做好标签分类
3,类纯度:取每个聚类里面最大的分类数据所占的比例,也需要数据事先做好标签分类
4,计算类内关联度和类间散度
5,让用户评价:在推荐系统中,需要聚类商品和聚类用户,根据推荐的效果来评价聚类算法
1,专家评价:把结果拿给专家坐判断,太耗人力
2,熵:计算各个类的熵,根据聚类结果里面各个数据分类的分布,需要数据事先做好标签分类
3,类纯度:取每个聚类里面最大的分类数据所占的比例,也需要数据事先做好标签分类
4,计算类内关联度和类间散度
5,让用户评价:在推荐系统中,需要聚类商品和聚类用户,根据推荐的效果来评价聚类算法
您可能感兴趣的与本文相关的镜像
Stable-Diffusion-3.5
Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率
1068
3617

被折叠的 条评论
为什么被折叠?