如何针对不同的人群返回这些人群需要的个性化搜索结果

问题摘要

当不同的人群用搜索来表达信息需求,返回给用户准确的个性化的搜索结果。

 

问题背景

现在人们用检索词表达信息需求,为更精准表达,人们往往用几个检索词(以空格分隔)组合起来,试图让搜索引擎明白自己的真实需求,但是这并不人性化也不是最终的智能解决方案。

 

同一个检索词对于不同的人群所指向的意义是不一样的。比如,搜索“高考指南”,学生是为了找辅导习题,老师是为了找教学资料;搜索“短租房“,租客是为了找房源,房东是为了发布房源,中介是为了找房东和租客。搜索引擎需向特定的人群,返回特定的检索结果。

 

当前的研究和技术现状

个性化搜索实现过程中语义搜索和人群定向是两项非常重要的技术。这两项技术的发展现状决定了个性化搜索的发展程度。

 

语义搜索(Semantic Search Engines),旨在提高搜索的准确性,通过了解用户的查询意图返回给用户真实需要的查询结果。语义搜索会通过拓展查询词(query),考虑包括位置、意图、同义词等各个因素,来产生更多的相关搜索结果。语义搜索是未来搜索引擎更趋于智能的一个趋势,人们对它期望很高,然而现实不容乐观。推理查询必须要基于一个足够大的数据库,并且这个数据库需要符合逻辑地排序、组织和被有条理地调用。在当前这个复杂的瞬息万变的网络环境,想要构建一个如此强大的数据库是很困难的。

 

在国外,已经有很多搜索引擎在做这方面的尝试,也取得了一些不错的成绩。在国内,语义搜索热门却遭遇瓶颈。这其中重要的原因在于中文的语法复杂而且充满歧义性。机器在解析一句话时可以有很多种理解方式,这便导致搜索结果的质量参差不齐,准确度很不稳定。同样一个词在不同的语气助词下会体现不同的搜索意图,而这也是目前中文语义搜索遇到的最大难题。

 

除了语义搜索,人群定向技术对于个性化搜索也是非常关键的。通常人群定向是搜索引擎依赖抓取和分析用户登录过的网站的历史记录(cookies)来实现的。然而,最近有一份调研报告指出,由于很多时候搜索引擎只关注当前正在使用的电脑的信息,导致了搜索引擎对人群定向的一些错误解析。这是因为,多人共用一台电脑情况较多,除了图书馆、网吧等公共场所的电脑,即使在家中的电脑也常是一家人共用,这其中可能包括了不同兴趣和诉求的个人。这种情况在在移动互联网领域有所不同,因为手机常常是私有物品,这就很容易根据手机上的历史记录来对这台手机主人进行定向配置。

 

技术关键点

1. 语义搜索方面:语义分析技术要识别到长尾词级别。拆分长句成短词,抓取其中关键词,按模型重组语义,返回正确搜索答案。例如拆解“北京最好喝的老北京豆汁在哪里?”,抓取关键的“北京”“最好喝”“老北京豆汁”“哪里”,按模型重组搜索语境分析用户意图,返回用户想要的“护国寺小吃”(地址、价格、评论等)。

 

2. 人群定向方面:为了给不同的人群返回他们最希望的答案,搜素引擎需要将人群分类,通过用户搜索历史记录(history)、地理位置信息(places)、登录过的网站(cookies)、收藏过的网址(favorite)等,解析用户的职业、地址、爱好、身份等,将用户投放在对应的人群分类中,再针对不同人群的特征和需求,返回给用户他们最想要的搜索结果。

 

实现后的价值

让搜索引擎读懂用户的真正意图,给用户最好的搜索体验:简单可依赖(人性化)、智能而准确(个性化)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值