具有部分单调性的区间个数计数问题——考虑分治:GZOI2023Day1T3

文章讨论了在给定最大值Max的情况下,如何利用单调性原理解决一个区间问题。通过分治策略,先枚举左端点,确定右边界,再利用前缀和后缀的性质,结合二分法找到满足条件的区间。这是一篇关于IT技术中的算法设计和优化的文章。
摘要由CSDN通过智能技术生成

询问有多少区间满足 S u m × L e n ≤ M a x 2 Sum\times Len\le Max^2 Sum×LenMax2

发现在 M a x Max Max 定的情况下,显然满足单调性

对于此类题目,可以考虑分治处理

对于当前分治区间,我们采用的分治策略是左右独立算+计算跨区间

显然必然是一段后缀加一段前缀。

先枚举左端点,然后根据上面结论,我们必须使:

  • M a x Max Max

所以右边界已经限定

剩下的满足单调性,二分即可

定右端点同理

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值