妙妙区间dp(从大往小,计算小对大的贡献(2^n的区间dp))AGC035D

https://www.luogu.com.cn/problem/AT_agc035_d

f ( l , r , f l , f r ) f(l,r,fl,fr) f(l,r,fl,fr) 表示现在在区间 [ l , r ] [l,r] [l,r] a l − 1 + 1 a_{l-1}+1 al1+1 对答案贡献为 f l fl fl f r fr fr 同理。

然后枚举最后一次操作的格子 k k k,然后分隔为 f ( l , k − 1 , f l , f l + f r ) + f ( k + 1 , r , f l + f r , f r ) + a k × ( f l + f r ) f(l,k-1,fl,fl+fr)+f(k+1,r,fl+fr,fr)+a_k\times (fl+fr) f(l,k1,fl,fl+fr)+f(k+1,r,fl+fr,fr)+ak×(fl+fr),显然状态数为 2 n n 2 2^n n^2 2nn2,记忆化搜索即可

#include<bits/stdc++.h>
using namespace std;
#ifdef LOCAL
 #define debug(...) fprintf(stdout, ##__VA_ARGS__)
#else
 #define debug(...) void(0)
#endif
#define int long long
inline int read(){int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;
ch=getchar();}while(ch>='0'&&ch<='9'){x=(x<<1)+
(x<<3)+(ch^48);ch=getchar();}return x*f;}
#define Z(x) (x)*(x)
#define pb push_back
#define fi first
#define se second
//#define M
//#define mo
//#define N
int n, m, i, j, k, T;
int a[30]; 

int dp(int l, int r, int fl, int fr) {
	if(l>r) return 0; 
	int ans=1e18; 
	for(int k=l; k<=r; ++k)
		ans=min(ans, dp(l, k-1, fl, fl+fr)+dp(k+1, r, fl+fr, fr)+a[k]*(fl+fr)); 
	return ans; 
}

signed main()
{
//	#ifdef LOCAL
//	  freopen("in.txt", "r", stdin);
//	  freopen("out.txt", "w", stdout);
//	#endif
//	srand(time(NULL));
//	T=read();
//	while(T--) {
//
//	}
	n=read(); 
	for(i=1; i<=n; ++i) a[i]=read(); 
	printf("%lld", a[1]+a[n]+dp(2, n-1, 1, 1)); 
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值