折半查找
基本过程:在有序表中取中间记录作为比较对象,若给定值与中间记录的关键字相等,则查找成功;若给定值小于中间记录的关键字,则在中间记录的左半区继续查找;若给定值大于中间记录的关键字,则在中间记录的右半区继续查找。不断重复上述过程,直到查找成功,或所有查找区域无记录,查找失败为止。
//arr为待查找的数组,key为要查找的关键字,low和high为需要查找的数组下标的范围
public static int find1(int[] arr, int key, int low, int high)
{
if (arr != null && arr.Length > 0)
{
if ((low >= 0 && low <= arr.Length - 1) && (high >= low && high <= arr.Length - 1))
{
int mid;
while (low <= high)
{
mid = (low + high) / 2;
if (key < arr[mid])
{
high = mid - 1;
}
else if (key > arr[mid])
{
low = mid + 1;
}
else
{
return mid;
}
}
}
}
return -1;
}
插值查找
基本思想:如果一个有序的序列是均匀分布的,那么待查找的关键字的位置就可以计算出来,首先用待查找范围的最大值减去待查找范围的最小值,然后除以这个范围的大小,即为每个单位之间的差值(即两个相邻元素之间的差值),然后用待查找的关键字减去待查找范围的最小值,然后用这个差值除以每个单位之间的差值,即为元素的位置,适用于待查找元素的分布较均匀的情况
public static int find2(int[] arr, int key, int low, int high)
{
if (arr != null && arr.Length > 0)
{
int mid = 0;
if ((low >= 0 && low <= arr.Length - 1) && (high >= low && high <= arr.Length - 1))
{
while (low <= high)
{
if (arr[high] > arr[low]) //防止除零异常
{
mid = low + (key - arr[low]) * ((high - low) / (arr[high] - arr[low]));
}
else if (arr[low] == arr[high] && arr[low] == key)
{
return low;
}
if (key < arr[mid])
{
high = mid - 1;
}
else if (key > arr[mid])
{
low = mid + 1;
}
else
{
return mid;
}
}
}
}
return -1;
}
斐波那契查找
说明:该算法同样要求待查找的序列有序,要想使用该算法,待查找序列的长度必须等于某个可以进行黄金分割的长度值,若不等于,则需要对序列的长度补齐;该算法需要用到斐波那契数列,该数列的特点是长度越长前一项与后一项的比值越接近黄金分割点
下面是一个斐波那契数列{1,1,2,3,5,8,13,21},如果一个待查找序列的长度为13,那么这个序列的第一个黄金分割点的位置就为8,如果待查找序列的长度不等于斐波那契数列中的某个值,则需要向后补齐
//参数为待查找序列的长度
//该方法用于根据待查找序列的长度生成斐波那契数组
public static List<int> productF(int len)
{
List<int> list = new List<int>();
list.Add(1);
list.Add(1);
while (len > list[list.Count - 1])
{
int n1 = list[list.Count - 2];
int n2 = list[list.Count - 1];
list.Add(n1 + n2);
}
return list;
}
public static int find3(List<int> list, int key)
{
if (list != null && list.Count > 0)
{
int mid = 0, low = 0, k = 0;
int len = list.Count;
int high = len - 1;
List<int> listF = productF(len);
while (len > listF[k]) //寻找能够构成黄金分割的斐波那契数组的下标,目的是把数组的长度补到能够进行黄金分割的长度
{
k++;
}
for (int i = list.Count; i < listF[k]; i++)
{
list.Add(list[len - 1]); //补齐
}
while (low <= high)
{
mid = low + listF[k - 1] - 1; //listF[k-1]即为list的黄金分割点的长度,因为下标从0开始所以减1后才为list黄金分割点的正确位置
if (key < list[mid])
{
k--;
high = mid - 1;
}
else if (key > list[mid])
{
low = mid + 1;
k = k - 2;
}
else //查找成功
{
if (mid <= len - 1) //位于原始长度之间
{
return mid;
}
else //位于不起长度之间,因此返回返回原始长度的最后一个位置
{
return len - 1;
}
}
}
}
return -1;
}