证: 设A是正交矩阵, λ是A的特征值, α是A的属于λ的特征向量
则
A
T
A
=
E
A^TA = E
ATA=E (E单位矩阵),
A
α
=
λ
α
,
α
≠
0
Aα=λα, α \neq 0
Aα=λα,α̸=0
考虑向量λα与λα的内积.
一方面,
(
λ
α
,
λ
α
)
=
λ
2
(
α
,
α
)
.
(λα,λα)=λ^2(α,α).
(λα,λα)=λ2(α,α).
另一方面,
(
λ
α
,
λ
α
)
=
(
A
α
,
A
α
)
=
(
A
α
)
T
(
A
α
)
=
α
T
A
T
A
α
(λα,λα) = (Aα,Aα) = (Aα)^T(Aα) = α^TA^TAα
(λα,λα)=(Aα,Aα)=(Aα)T(Aα)=αTATAα
=
α
T
α
=
(
α
,
α
)
.
= α^Tα = (α,α).
=αTα=(α,α).
所以有
λ
2
(
α
,
α
)
=
(
α
,
α
)
.
λ^2(α,α) = (α,α).
λ2(α,α)=(α,α).
又因为 α≠0, 所以 (α,α)>0.
所以 λ^2 = 1.
所以 λ = ±1.
即正交矩阵的特征值只能是1或-1
如何证明正交矩阵的特征值只能是+1或-1
最新推荐文章于 2025-03-06 07:23:45 发布