证明:正交矩阵的特征值为±1

8aa7f48468c9426d929fdedd9c8280b4.jpg

 

首先证明如果$N$是实正规矩阵,则$N$是正交矩阵且特征根全为实数。 由于$N$是正规矩阵,即$N^HN=NN^H$,其中$H$表示共轭转置。因此,$N^HN=NN^H=(N^HN)^H$,即$N^HN$是自共轭的,因此它是一个实对称矩阵。而实对称矩阵一定可以通过正交对角化,即存在正交矩阵$Q$和对角矩阵$\Lambda$,使得$N^HN=Q\Lambda Q^{-1}$。由于$N^HN$是实对称矩阵,因此它的特征值都是实数,记为$\lambda_1,\lambda_2,\cdots,\lambda_n$。由于$N^HN$与$NN^H$有相同的特征值,因此$N$的特征值也都是实数。同时,由于$Q$是正交矩阵,因此$N=Q\Lambda^{1/2}Q^{-1}$也是一个正交矩阵。 接下来证明如果$N$是对称矩阵特征为±1,则$N^2=E$。 由于$N$是对称矩阵,因此可以通过正交对角化,即存在正交矩阵$Q$和对角矩阵$\Lambda$,使得$N=Q\Lambda Q^{-1}$。由于$N$的特征值都是±1,因此$\Lambda$的对角元只可能是±1。而且由于$N$是对称矩阵,因此$N^T=N$,即$Q\Lambda Q^{-1}=(Q\Lambda Q^{-1})^T=Q\Lambda Q^{-1}$,因此$Q$是一个正交矩阵。因此,对于任意向量$x$,有: $$ \begin{aligned} N^2x&=N(Nx)\\ &=Q\Lambda Q^{-1}(Q\Lambda Q^{-1}x)\\ &=Q\Lambda^2 Q^{-1}x \end{aligned} $$ 其中$\Lambda^2$的对角元为±1。因此,对于任意向量$x$,有$N^2x=\pm x$,即$N^2=\pm E$。但是,由于$N$是正交矩阵,因此$N^TN=NN^T=E$,因此$N^2=E$。 综上所述,如果$N$是实正规矩阵,则$N$是正交矩阵且特征根全为实数,且如果$N$是对称矩阵特征为±1,则$N^2=E$。而且这三条命题彼此等价。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学分溪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值