- 博客(17)
- 资源 (6)
- 收藏
- 关注
原创 【Python】pandas加载数据(部分代码未完成测试)
Textpd.read_table('data/01.txt')pd.read_csv('data/01.txt')pd.read_table("data/02.txt")pd.read_table("data/03.txt")pd.read_table("data/03.txt", sep=':', header=None)pd.read_csv("data/03.txt"...
2019-05-28 21:48:30 205
原创 【Python】pandas中对数据的选取操作
import numpy as npimport pandas as pddata= { 'name':['张三', '李四', '王五', '赵六'], 'age':[18, 19, 17, 20], 'height':[1.68, 1.73, 1.62, 1.55]}datadf = pd.DataFrame(data)dfdf = pd.Dat...
2019-05-27 21:59:01 961
原创 【Python】pandas安装与数据结构
安装:pip install pandasimport numpy as npimport pandas as pdSeriesser = pd.Series(['张三', '李四', '王五'])serser = pd.Series(['张三', '李四', '王五'], index=list(range(1, 4)))ser'''1 张三2 李四3...
2019-05-26 18:11:51 153
原创 【Python】numpy中的比较运算
import numpy as npFancy Indexx = np.array(list('ABCDEFG'))x # array(['A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype='<U1')x[1] # 'B'x[1:3] # array(['B', 'C'], dtype='<U1')x[1:5] ...
2019-05-26 14:54:02 6266
原创 【Python】numpy中的arg运算
import numpy as npnp.random.seed(100) # 多次运行得到相同的结果,设置随机数的种子x = np.random.random(50)xnp.min(x) # x的最小值np.argmin(x) # x的最小值的索引x[4] # x的第4位的索引值np.max(x) # x的最大值np.argmax(x) ...
2019-05-22 23:42:10 1233
原创 【Python】numpy中的聚合操作
import numpy as npx = np.random.random(100)x # 100个随机数sum(x) # 对x求和np.sum(x) # numpy对x求和arr = np.random.rand(10**7) # 生成10的7次方个随机数 %timeit sum(arr) # 耗时774 ms %timeit np.sum(...
2019-05-21 23:32:17 612
原创 【Python】numpy中的矩阵运算
import numpy as npa = np.array([0, 2, 4])a * 2 # array([0, 4, 8])a = [0, 2, 4]a * 2 # [0, 2, 4, 0, 2, 4]import arrayarray.array('i', [0, 2, 4]) * 2 # array('i', [0, 2, 4, 0, 2, 4])...
2019-05-12 09:48:46 980
原创 【Python】ndarray中的合并与分割
import numpy as npndim shape size reshapea = np.arange(10)a # array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])a.ndim # 1a.shape # (10,)a.size # 10A = np.ones(shape=(3, 5)) # 3...
2019-05-07 20:38:47 1826
原创 【Python】numpy中矩阵和随机数生成
import numpy as npnp.arangenp.array(range(10)) # array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])np.array(range(5,10,2)) # range最多3个参数,第1个起始;第2个结束(不包括);第3个为步长np.arange(10) # array([0, 1, 2, 3, ...
2019-05-07 18:46:33 12713 1
原创 【Python】numpy安装+numpy.ndarray基本使用
numpy安装:pip install numpynumpy.ndarray基本使用:import numpy as npnp.__version__ # 获取numpy的版本# numpy.__version__ # name 'numpy' is not definednparr = np.array(list(range(10)))nparr # ar...
2019-05-01 23:38:04 999
原创 【Python】jupyter安装+基本使用+魔法命令
jupyter安装启动:http://jupyter.org/ #jupyter官网pip install jupyter # 安装jupyterjupyter notebook # 启动jupyterjupyter notebook快捷键:Ctrl + Enter # 执行runShift + Enter ...
2019-05-01 22:23:04 777
转载 用JS刷新指定页面(转自superzhaoxi)
先来看一个简单的例子:下面以三个页面分别命名为frame.html、top.html、bottom.html为例来具体说明如何做。frame.html 由上(top.html)下(bottom.html)两个页面组成,代码如下:<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"><HTML>&l...
2008-04-22 21:37:00 1311
转载 如何迅速成为Java高手(转)
很多网友问我学习Java有没有什么捷径,我说“无他,唯手熟尔”。但是我却很愿意将自己学习的一些经验写出来,以便后来者少走弯路,帮助别人是最大的快乐嘛!要想学好Java,首先要知道Java的大致分类。我们知道,自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environme...
2007-11-14 16:06:00 425
转载 成为JAVA高手的八大条件(转载)
世界上并没有成为高手的捷径,但一些基本原则是可以遵循的。 1、扎实的基础 数据结构、离散数学、编译原理,这些是所有计算机科学的基础,如果不掌握它们,很难写出高水平的程序。程序人人都会写,但当你发现写到一定程度很难再提高的时候,就应该想想是不是要回过头来学学这些最基本的理论。不要一开始就去学OOP,即使你再精通OOP,遇到一些基本算法的时候可能也会束手无策。因此多读一些计算机基础理论方面...
2007-10-18 14:35:00 386
转载 一个合格的程序员该做的事(转载)
程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多 2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作 3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错...
2007-10-18 14:13:00 362
转载 硬盘分区别忽视 七大分区原则(转载)
看到这个题目,你也许会不屑一顾——硬盘分区谁都会,这还有什么好说的。是的,硬盘分区也许真的是人人都会,但是最佳、最好使的硬盘分区不是人人都会的。特别是掌握一些硬盘分区的原则,可以让你在后续的使用中更加得心应手,也不会在某一个应用无法实现的时候而对最初的分区方案后悔莫及。看似简单的硬盘分区,你可别忽视了! 100GB以上的硬盘在过去被称为海量硬盘,可如今320GB硬盘也已经司空见惯,如...
2007-10-14 16:05:00 557
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人