Variational Autoencoder: Basic Concept

本文从神经网络和概率模型两个角度探讨Variational Autoencoder(VAE),介绍了如何通过Reparametrization Trick解决梯度消失问题,并讨论了模型的学习与优化过程。通过对VAE的理解,可以掌握其在生成新数据上的应用。
摘要由CSDN通过智能技术生成

The neural network perspective

传统的 Autoencoder 结构如下图:

但是这种结构没法生成新数据,只能做数据压缩。怎么改进呢?可以考虑加一个正则项,让隐变量趋近一个单位高斯分布。

generation_loss = mean(square(generated_image - real_image))  
latent_loss = KL-Divergence(latent_variable, unit_gaussian)  
loss = generation_loss + latent_loss  

其中两个高斯分布的 KL divergence 可以套公式计算如下,

# z_mean and z_stddev are two vectors generated by encoder network
latent_loss = 0.5 * tf.reduce_sum(tf.square(z_mean) + \ 
            tf.square(z_stddev) - tf.log(tf.square(z_stddev)) - 1,1)  

值得一提的是,encoder 不是直接生成隐变量 z 的分布,而是先假设隐变量服从一个高斯分布,让 encoder 生成高斯分布的均值和方差。代码是这样的

samples = tf.random_normal([batchsize,n_z],0,1,dtype=tf.float32)  
sampled_z = z_mean + (z_stddev * samples)

下面用公式形式化地描述上面的过程,用 qθ(z|x) 表示 encoder,也叫 Inference Network,是从样本中得到隐变量;用 pϕ(x|z) 表示 decoder,也叫 Generative Network. 其中 θ,ϕ 是神经网络的参数,即权重和偏置。

那么对单个样本 xi 的损失为

Li(θ,ϕ)=Ezqθ(z|xi)[logpϕ(xi|z)]+KL(qθ(z|xi)p(z))

前者是重构损失,用对数是因为要极大化整体训练集的对数似然函数;后者是 KL divergence 的正则项。 p(z)N(0,I)

假设 encoder 得到的高斯分布的均值为 μ(x) ,方差是 Σ(x) ,而 p(z) 服从标准正态分布,即 p(z)N(0,I) ,其中 I 是单位矩阵。那么 KL divergence 计算如下,

KL[N(μ(x),Σ(x))N(0,I)]=12(tr(Σ(x))+(μ(x))(μ(x))klogdet(Σ(x)))


The probability model perspective

无标题.png-39.5kB

如果是概率图模型的角度,有隐变量 z 和观察变量 x ,那么联合概率分布是

p(x,z)=p(z)
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值