MLaPP
文章平均质量分 87
张小彬的代码人生
coder
展开
-
MLaPP 读书笔记-概述
MLaPP 全称是 Machine Learning:A Probabilistic Prospective,是 2012 年出的一本讲机器学习的一本书。我们实验室在2016年秋季决定读这本书,但是只读前半部分基础的部分,具体安排见 CIS2016 。原书的封面见下图,我在读书的过程中,发现这本书的内容很难啃,但是干货很多,所以又不得不硬着头皮啃下去,只好边读书边写下笔记。感觉做笔记有很多的好处,原创 2017-02-08 13:36:25 · 14931 阅读 · 0 评论 -
MLaPP Chapter 10 Bayes nets 贝叶斯网络
10.1 Introduction书里开头就引用了迈克尔·乔丹对图模型的理解,他说处理复杂系统有两个原则,模块性(modularity)个抽象性(abstraction),而概率论(probability theory)则通过因式分解(factorization)和求平均(averaging)深刻地实现了这两个原则。概率图模型有三大任务:表征(representatino),推断(Inference原创 2017-02-08 16:21:43 · 2698 阅读 · 9 评论 -
MLaPP Chapter 9 GLM and the exponential family 指数家族
9.1 Introduction前面讲过的很多概率分布其实都是属于指数家族簇,比如高斯,伯努利,泊松,狄利克雷分布等。当然,要除掉均匀分布和学生 t 分布。我们可以用指数家族分布来表示 class-conditional density,由此建立广义线性模型(GLM, Generalized Linear Model)这个生成分类器。9.2 The exponential family 指数家族指数原创 2017-02-08 16:16:20 · 3109 阅读 · 0 评论 -
MLaPP Chapter 8 Logistic Regression 逻辑斯特回归
8.1 IntroductionLR 是一个非常重要的模型,几乎所有的机器学习职位面试都会问到。因此这章是重点,一定要看懂。8.2 Model specification把线性回归的高斯分布,换成伯努利分布,就成了逻辑斯特回归,不过这个模型其实是个分类模型,p(y|x,w)=Ber(y|sigm(wTx))p(y|\mathbf{x}, \mathbf{w}) = \text{Ber}(y|\tex原创 2017-02-08 15:57:22 · 2537 阅读 · 2 评论 -
MLaPP Chapter 7 Linear Regression 线性回归
7.1 Introduction线性回归(Linear Regression)是统计学和机器学习中的主力军(work horse),当用核函数等做基函数扩充(basis function expansion)时,又可以模拟非线性关系。除了回归问题,如果用伯努利或者多努利分布代替高斯分布,那么就可以用来做分类问题(classification),下一章会讲。7.2 Model specificatio原创 2017-02-08 15:52:55 · 2139 阅读 · 0 评论 -
MLaPP Chapter 6 Frequentist statistics 频率学派统计学
6.1 Introduction频率学派统计学(frequentist statistics),经典统计学(classical statistics),或者叫正统的统计学(orthodox statistics),设计了一些不把参数当做随机变量的统计推断方法,从而避免了使用贝叶斯法则和先验。频率学派依赖于抽样分布(sampling distribution),而贝叶斯学派则依赖后验分布(poster原创 2017-02-08 15:50:34 · 2677 阅读 · 0 评论 -
MLaPP Chapter 5 Bayesian statistics 贝叶斯统计
5.1 Introduction 介绍在第三章我们讨论了如果用最大化后验(MAP)做参数估计,即 θ^=argmaxp(θ|D)\hat\theta = \arg\max_p(\theta | \mathcal{D}),和计算全后验 p(θ|D)p(\theta|\mathcal{D}) 和计算后验预测密度(posterior predictive density) p(x|D)p(\mathbf{原创 2017-02-08 15:42:03 · 4327 阅读 · 0 评论 -
MLaPP Chapter 4 Gaussian models 高斯模型
4.1 Introduction 介绍4.1.1 Notation 符号一般矩阵用大写加粗的字母,向量用小写加粗字体。4.1.2 Basics 基础回顾一下多元高斯概率密度函数:N(x|μ,Σ)≜1(2π)D/2|Σ|1/2exp[−12(x−μ)TΣ−1(x−μ)]\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{\Sigma}) \triangle原创 2017-02-08 15:37:11 · 3264 阅读 · 0 评论 -
MLaPP Chapter 3: Generative models for distrete data
3.1 Introduction生成模型(generative model)一般会按照下面的贝叶斯公式构造分类器:p(y=c|x,θ)∝p(x|y=c,θ)p(y=c|θ))p(y=c|\mathrm{x, \theta}) \propto p(\mathrm{x}|y=c, \theta)p(y=c|\theta))中间的 ∝\propto 符号表示“正比于”,即忽略了常系数。而概率 p(x|y=原创 2017-02-08 14:22:56 · 2194 阅读 · 0 评论 -
MLaPP Chapter 2 Probability 概率论
2.1 Introduction 简介对概率一般有两种理解(interpretations):frequentist interpretation, 这个层面上是说,概率可以看作是多次事件实验的发生的频率的逼近举个例子,假如进行很多次抛硬币实验,会发现最终硬币会出现正面的概率为0.5Bayesian interpretation, 贝叶斯派常把概率当做是量化事件不确定型的工具 原文 (p原创 2017-02-08 14:09:44 · 3312 阅读 · 0 评论 -
MLaPP Chapter 1 Introduction
1.1 Machine Learning: what and why?由于现在处于信息爆炸的时代,机器学习的意义在于,发现数据中的模式,并用于新数据的预测之中。而本书则会偏向于概率论的角度来看待机器学习。1.1.1 Types of Machine Learning机器学习大概分成下面三种,有监督学习predictive or supervised method给定训练集,求从输入到输出的映射。原创 2017-02-08 13:54:50 · 2719 阅读 · 0 评论 -
MLaPP Chapter 11 Mixture models and the EM algorithm
11.1 Latent variable models 隐变量模型图模型尝试在不同的观察变量之间建立条件独立关系,另一种思路则是用隐变量模型,即 LVMs, Latent variable models,这种模型假设观察变量都是从一个共同的“隐变量”中得到的。隐变量的意思就是无法观测到,没有数据,可以人为定义个数和表示的含义。因此聚类算法中的簇就可以看做是隐变量,而有监督学习中如果给了簇的标定数据,原创 2017-02-08 16:23:34 · 1850 阅读 · 0 评论