第五章 特征值与特征向量
5.1 特征值与特征向量
基本概念
有 n 阶方阵
Aα=λα
成立,那么称
λ
为矩阵
A
的一个
特征值,对应
α
就是
特征向量。
设 n 阶矩阵
|λE−A|=∣∣∣∣∣∣λ−a11−a21⋮−an1−a12λ−a22⋮−an2⋯⋯⋮⋯−a1n−a2n⋮λ−ann∣∣∣∣∣∣
称为特征多项式,而
|λE−A|=0
就是特征方程,方程的根就是矩阵
A
的特征值。
总结起来就是
λ 是矩阵 A 的一个特征值 ⇔