线性代数复习 第五章 特征值和特征向量

本文主要探讨线性代数中的特征值和特征向量,包括基本概念、性质和计算方法。讲解了特征值的求解及其与矩阵的关系,如矩阵的迹和行列式。还阐述了相似矩阵的概念,特别是实对称矩阵如何被对角化,并强调了实对称矩阵的正交性质。
摘要由CSDN通过智能技术生成

第五章 特征值与特征向量

5.1 特征值与特征向量

基本概念

n 阶方阵 A ,非零 n 维列向量 α ,若存在数 λ ,使得关系式

Aα=λα
成立,那么称 λ 为矩阵 A 的一个 特征值,对应 α 就是 特征向量


n 阶矩阵 A=(aij) ,那么行列式

|λEA|=λa11a21an1a12λa22an2a1na2nλann
称为特征多项式,而 |λEA|=0 就是特征方程,方程的根就是矩阵 A 的特征值。

总结起来就是

λ 是矩阵 A 的一个特征值  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值