MLaPP Chapter 4 Gaussian models 高斯模型

本文详细介绍了高斯模型,包括符号定义、基础知识、多元高斯模型的极大似然估计、高斯判别分析及其应用。讨论了线性高斯系统、Wishart分布,并探讨了如何推断高斯分布的参数。内容涵盖从理论到实践,适合机器学习初学者及进阶者阅读。
摘要由CSDN通过智能技术生成

4.1 Introduction 介绍

4.1.1 Notation 符号

一般矩阵用大写加粗的字母,向量用小写加粗字体。

4.1.2 Basics 基础

回顾一下多元高斯概率密度函数:

N(x|μ,Σ)1(2π)D/2|Σ|1/2exp[12(xμ)TΣ1(xμ)]


首先,我们来胡扯一下。不不不,不对,首先我们来解释一下马氏距离(Mahalanobis Distance)的概念。和欧式距离(Euclidean distance)一样,马氏距离可以计算两点之间的距离,但是在计算距离的时候,同时会考虑整体样本的分布情况,所以可以说马氏距离也是衡量一个点与一个分布之间的标准。

假设多维的高斯分布均值为 μ=(μ1,...,μn) ,那么定义变量 x=(x1,...,xn) 两点之间的欧氏距离为

dE(x,μ)=(xμ)T(xμ)=(x1μ1)2++(xnμn)2
那么以原点为中心,欧氏距离 x2=c 的所有点集合为一个正球体,
x21+x22++x2n=c2

在统计上,我们希望寻找一个这样的距离,沿着某方向分量上的数据如果比较离散,则给一个较小的权重。假设有

u=(xisi),v=(μisi),i=1,...,p
为新的基底,
dM(x,μ)=dE(u,v)=(uv)T(uv)=(x1μ1s1)2++(xnμnsn)2=(xμ)TΣ1(xμ)

这里的 Σ=diag(s21,,s2n)

那么以原点为中心,马氏距离 x=c 的所有点集合为一个椭球体,

(x1s1)2+(x2s2)2++(xnsn)2=c2


好了,上面都是根据某篇博客胡编的,下面来看书里是怎么解读多元高斯分布的概率密度函数的。

首先,协方差矩阵 Σ 是一个实对称矩阵,必然可以正交对角化。有 Σ=UTΛU ,其中 U 为正交矩阵(orthonormal matrix),即满足 UTU=I ,由矩阵 Σ 的特征向量组成; Λ 为对角矩阵(diagonal matrix),对角元素为 Σ 的特征值。同理:

Σ1=UTΣ1U1=UΣ1UT=i=1D1λiuiuTi
注意 λ
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值