Ollama 服务配置-常用环境变量

在 Linux 上设置环境变量

  1. 1. 通过调用systemctl edit ollama.service编辑 systemd 服务。这将打开一个编辑器。这边可以直接通过vim /etc/systemd/system/ollama.service,打开编辑。

  2. 2. 对于每个环境变量,在[Service]部分下添加一行Environment

vim /etc/systemd/system/ollama.service
Environment="OLLAMA_HOST=0.0.0.0:11434"
Environment="OLLAMA_ORIGINS=*"
Environment="OLLAMA_DEBUG=1"
Environment="OLLAMA_FLASH_ATTENTION=1"

对于每个环境变量,在[Service]部分下添加一行Environment.
1. OLLAMA_HOST=0.0.0.0 外网访问
2. OLLAMA_MODELS=/mnt/data/.ollama/models 模型默认下载路径
3. OLLAMA_KEEP_ALIVE=24h 设置模型加载到内存中保持 24 个小时(默认情况下,模型在卸载之前会在内存中保留 5 分钟)
4. OLLAMA_HOST=0.0.0.0:8080 修改默认端口 11434 端口
5. OLLAMA_NUM_PARALLEL=2 设置 2 个用户并发请求
6. OLLAMA_MAX_LOADED_MODELS=2 设置同时加载多个模型

#为了使更改生效,您需要重新加载systemd的配置。使用以下命令:
sudo systemctl daemon-reload
#最后,重启服务以应用更改:
sudo systemctl restart ollama

默认情况下,ollama模型的存储目录如下:
macOS: `~/.ollama/models` 
Linux: `/usr/share/ollama/.ollama/models`  
Windows: `C:\Users\<username>\.ollama\models`

journalctl -u ollama | grep -i 'prompt='    #查看日志
/set verbose    #设置以查看token速度

配置 Ollama

Ollama 提供了多种环境变量以供配置:

OLLAMA_DEBUG:是否开启调试模式,默认为 false。
OLLAMA_FLASH_ATTENTION:是否闪烁注意力,默认为 true。
OLLAMA_HOST:Ollama 服务器的主机地址,默认为空。
OLLAMA_KEEP_ALIVE:保持连接的时间,默认为 5m。
OLLAMA_LLM_LIBRARY:LLM 库,默认为空。
OLLAMA_MAX_LOADED_MODELS:最大加载模型数,默认为 1。
OLLAMA_MAX_QUEUE:最大队列数,默认为空。
OLLAMA_MAX_VRAM:最大虚拟内存,默认为空。
OLLAMA_MODELS:模型目录,默认为空。
OLLAMA_NOHISTORY:是否保存历史记录,默认为 false。
OLLAMA_NOPRUNE:是否启用剪枝,默认为 false。
OLLAMA_NUM_PARALLEL:并行数,默认为 1。
OLLAMA_ORIGINS:允许的来源,默认为空。
OLLAMA_RUNNERS_DIR:运行器目录,默认为空。
OLLAMA_SCHED_SPREAD:调度分布,默认为空。
OLLAMA_TMPDIR:临时文件目录,默认为空。Here is the optimized list in the desired format:
OLLAMA_DEBUG:是否开启调试模式,默认为 false。
OLLAMA_FLASH_ATTENTION:是否闪烁注意力,默认为 true。
OLLAMA_HOST:Ollama 服务器的主机地址,默认为空。
OLLAMA_KEEP_ALIVE:保持连接的时间,默认为 5m。
OLLAMA_LLM_LIBRARY:LLM 库,默认为空。
OLLAMA_MAX_LOADED_MODELS:最大加载模型数,默认为 1。
OLLAMA_MAX_QUEUE:最大队列数,默认为空。
OLLAMA_MAX_VRAM:最大虚拟内存,默认为空。
OLLAMA_MODELS:模型目录,默认为空。
OLLAMA_NOHISTORY:是否保存历史记录,默认为 false。
OLLAMA_NOPRUNE:是否启用剪枝,默认为 false。
OLLAMA_NUM_PARALLEL:并行数,默认为 1。
OLLAMA_ORIGINS:允许的来源,默认为空。
OLLAMA_RUNNERS_DIR:运行器目录,默认为空。
OLLAMA_SCHED_SPREAD:调度分布,默认为空。
OLLAMA_TMPDIR:临时文件目录,默认为空。

Ollama使用常见的指令:

ollama serve         #启动ollama  
ollama create        #从模型文件创建模型  
ollama show          #显示模型信息  
ollama run           #运行模型  
ollama pull          #从注册表中拉取模型  
ollama push          #将模型推送到注册表  
ollama list          #列出模型  
ollama cp            #复制模型  
ollama rm            #删除模型  
ollama help          #获取有关任何命令的帮助信息

导入huggingface模型

最新版Ollama开始支持从Huggingface Hub上直接拉取各种模型,包括社区创建的GGUF量化模型。用户可以通过简单的命令行指令快速运行这些模型,可以使用如下命令:

ollama run hf.co/{username}/{repository}

要选择不同的量化方案,只需在命令中添加一个标签:

ollama run hf.co/{username}/{repository}:{quantization}

例如:量化名称不区分大小写
ollama run hf.co/bartowski/Llama-3.2-3B-Instruct-GGUF:IQ3_M  
ollama run hf.co/bartowski/Llama-3.2-3B-Instruct-GGUF:Q8_0

还可以直接使用完整的文件名作为标签:  
ollama run hf.co/bartowski/Llama-3.2-3B-Instruct-GGUF:Llama-3.2-3B-Instruct-IQ3_M.gguf

手动安装

下载并解压压缩包


curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
启动ollama
ollama serve

安装特定版本

OLLAMA_VERSION环境变量与安装脚本一起使用,以安装特定版本的 Ollama,包括预发行版。可以在 releases 页面中找到版本号。

releases页面:https://github.com/ollama/ollama/releases

例如:
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.3.9 sh
查看日志

要查看作为服务运行的 Ollama 的日志,请运行:


journalctl -e -u ollama

出现这个错误的原因是在导入seaborn包时,无法从typing模块中导入名为'Protocol'的对象。 解决这个问题的方法有以下几种: 1. 检查你的Python版本是否符合seaborn包的要求,如果不符合,尝试更新Python版本。 2. 检查你的环境中是否安装了typing_extensions包,如果没有安装,可以使用以下命令安装:pip install typing_extensions。 3. 如果你使用的是Python 3.8版本以下的版本,你可以尝试使用typing_extensions包来代替typing模块来解决该问题。 4. 检查你的代码是否正确导入了seaborn包,并且没有其他导入错误。 5. 如果以上方法都无法解决问题,可以尝试在你的代码中使用其他的可替代包或者更新seaborn包的版本来解决该问题。 总结: 出现ImportError: cannot import name 'Protocol' from 'typing'错误的原因可能是由于Python版本不兼容、缺少typing_extensions包或者导入错误等原因造成的。可以根据具体情况尝试上述方法来解决该问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [ImportError: cannot import name ‘Literal‘ from ‘typing‘ (D:\Anaconda\envs\tensorflow\lib\typing....](https://blog.csdn.net/yuhaix/article/details/124528628)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值