转自:http://blog.csdn.net/zjyruobing/article/details/49908979
PSNR(Peak Signal to Noise Ratio)峰值信噪比,一种全参考的图像质量评价指标。
MSE表示当前图像X和参考图像Y的均方误差(Mean Square Error),H、W分别为图像的高度和宽度;
MSE=1H×W∑i=1H∑j=1W(X(i,j)−Y(i,j))2
PSNR
的单位是dB,数值越大表示失真越小。n为每像素的比特数,一般的灰度图像取8,即像素灰阶数为256.
PSNR=10log10((2n−1)2MSE)
PSNR
是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。
SSIM(Structural Similarity)结构相似性
μX
、
μY
分别表示图像X和Y的均值,
σX
、
σY
分别表示图像X和Y的方差,
σXY
表示图像X和Y的协方差,即
μX=1H×W∑i=1H∑j=1WX(i,j)
σX=(1H×W−1∑i=1H∑j=1W(X(i,j)−μX)2)12
σXY=1H×W−1∑i=1H∑j=1W(X(i,j)−μX)(Y(i,j)−μY)
SSIM 分别从亮度、对比度、结构三方面度量图像相似性。
l(X,Y)=2μXμY+C1μ2X+μ2Y+C1
c(X,Y)=2σXσY+C2σ2X+σ2Y+C2
s(X,Y)=σXY+C3σXσY+C3
C1 、 C2 、 C3 为常数,为了避免分母为0的情况,通常取 C1=(K1∗L)2 , C2=(K2∗L)2 , C3=C22 , 一般地K1=0.01, K2=0.03, L=255. 则
SSIM(X,Y)=l(X,Y)∗c(X,Y)∗s(X,Y)
SSIM
取值范围[0,1],值越大,表示图像失真越小.
SSIM 的特殊形式如下:
SSIM(X,Y)=(2μXμY+C1)(2σXY+C2)(μ2X+μ2Y+C1)(σ2X+σ2Y+C2)
MSSIM(Mean Structural Similarity )平均结构相似性
在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用加权计算每一窗口的均值、方差以及协方差,权值
wij
满足
∑i∑jwij=1
,通常采用高斯核,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM:
μX=∑i=1H∑j=1WwijX(i,j)
σX=(∑i=1H∑j=1Wwij(X(i,j)−μX))12
σXY=∑i=1H∑j=1Wwij(X(i,j)−μX)(Y(i,j)−μY)
MSSIM=1N∑k=1NSSIM(xk,yk)