解析PSNR和SSIM

本文介绍了两种常用的图像质量评价指标:PSNR(峰值信噪比)和SSIM(结构相似性)。PSNR是一种全参考的图像质量评价方法,通过计算图像之间的均方误差来量化失真程度。而SSIM则从亮度、对比度和结构三个方面综合衡量图像的相似性,更接近人眼视觉特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自:http://blog.csdn.net/zjyruobing/article/details/49908979

PSNR(Peak Signal to Noise Ratio)峰值信噪比,一种全参考的图像质量评价指标。

MSE表示当前图像X和参考图像Y的均方误差(Mean Square Error),H、W分别为图像的高度和宽度; 

MSE=1H×Wi=1Hj=1W(X(i,j)Y(i,j))2
PSNR 的单位是dB,数值越大表示失真越小。n为每像素的比特数,一般的灰度图像取8,即像素灰阶数为256. 
PSNR=10log10((2n1)2MSE)
PSNR 是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。

SSIM(Structural Similarity)结构相似性

μX μY 分别表示图像X和Y的均值, σX σY 分别表示图像X和Y的方差, σXY 表示图像X和Y的协方差,即 

μX=1H×Wi=1Hj=1WX(i,j)

σX=(1H×W1i=1Hj=1W(X(i,j)μX)2)12

σXY=1H×W1i=1Hj=1W(X(i,j)μX)(Y(i,j)μY)

SSIM 分别从亮度、对比度、结构三方面度量图像相似性。 
l(X,Y)=2μXμY+C1μ2X+μ2Y+C1

c(X,Y)=2σXσY+C2σ2X+σ2Y+C2

s(X,Y)=σXY+C3σXσY+C3

C1 C2 C3 为常数,为了避免分母为0的情况,通常取 C1=(K1L)2 C2=(K2L)2 C3=C22 , 一般地K1=0.01, K2=0.03, L=255. 则 
SSIM(X,Y)=l(X,Y)c(X,Y)s(X,Y)
SSIM 取值范围[0,1],值越大,表示图像失真越小. 
SSIM 的特殊形式如下: 
SSIM(X,Y)=(2μXμY+C1)(2σXY+C2)(μ2X+μ2Y+C1)(σ2X+σ2Y+C2)

MSSIM(Mean Structural Similarity )平均结构相似性

在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用加权计算每一窗口的均值、方差以及协方差,权值 wij 满足 ijwij=1 ,通常采用高斯核,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM: 

μX=i=1Hj=1WwijX(i,j)

σX=(i=1Hj=1Wwij(X(i,j)μX))12

σXY=i=1Hj=1Wwij(X(i,j)μX)(Y(i,j)μY)

MSSIM=1Nk=1NSSIM(xk,yk)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值