LeetCode63——Unique Paths II

LeetCode63——Unique Paths II

LeetCode62——Unique Paths不同的是,这里是要在路径上设置障碍的。

因此不能用组合的方法去做了(也许可以,但我实在想不到)

那就是传统二维数组的动态规划了。


定义动归方程如下:

首先 dp[i][j]表示到 点 (i,j) 路径的可能数,那么假设不存在障碍的情况下,则有:

dp[i][j]=dp[i-1][j] + dp[i][j-1]  因为他可以从两个不同的方向走到(i,j)处。


现在考虑障碍,如果  (i,j)  处有障碍,即值为1。那么不论dp[i-1][j] 和 dp[i][j-1]为多少,dp[i][j]恒为0


所以就有:


dp[i][j]=dp[i-1][j] + dp[i][j-1]    map[i][j]=0

dp[i][j]=0 map[i][j]=1


最后要注意的就是(0,1)  (1,0)这样的边界条件

代码:

class Solution {
public:
	int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
		int m = obstacleGrid.size();
		int n = obstacleGrid[0].size();
		if (m == 0 || n == 0)
			return 0;
		vector<vector<int>>dp(m, vector<int>(n));
		dp[0][0] = obstacleGrid[0][0] == 1 ? 0 : 1;
		for (int i = 0; i < m; i++)
		{
			for (int j = 0; j < n; j++)
			{
				if (i >= 1 && j >= 1)
				{
					if (obstacleGrid[i][j] == 0)
						dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
					else
						dp[i][j] = 0;
				}
				else if (i >= 1)//考虑边界条件
				{
					if (obstacleGrid[i][j] == 0)
						dp[i][j] = dp[i - 1][j];
					else
						dp[i][j] = 0;
				}
				else if (j >= 1)//考虑边界条件
				{
					if (obstacleGrid[i][j] == 0)
						dp[i][j] = dp[i][j - 1];
					else
						dp[i][j] = 0;
				}
			}
		}
		return dp[m - 1][n - 1];
	}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值