Working out
Summer is coming! It's time for Iahub and Iahubina to work out, as they both want to look hot at the beach. The gym where they go is a matrix a with n lines and m columns. Let number a[i][j] represents the calories burned by performing workout at the cell of gym in the i-th line and the j-th column.
Iahub starts with workout located at line 1 and column 1. He needs to finish with workout a[n][m]. After finishing workout a[i][j], he can go to workout a[i + 1][j] or a[i][j + 1]. Similarly, Iahubina starts with workout a[n][1] and she needs to finish with workout a[1][m]. After finishing workout from cell a[i][j], she goes to either a[i][j + 1] or a[i - 1][j].
There is one additional condition for their training. They have to meet in exactly one cell of gym. At that cell, none of them will work out. They will talk about fast exponentiation (pretty odd small talk) and then both of them will move to the next workout.
If a workout was done by either Iahub or Iahubina, it counts as total gain. Please plan a workout for Iahub and Iahubina such as total gain to be as big as possible. Note, that Iahub and Iahubina can perform workouts with different speed, so the number of cells that they use to reach meet cell may differs.
InputThe first line of the input contains two integers n and m (3 ≤ n, m ≤ 1000). Each of the next n lines contains m integers: j-th number from i-th line denotes element a[i][j] (0 ≤ a[i][j] ≤ 105).
The output contains a single number — the maximum total gain possible.
3 3 100 100 100 100 1 100 100 100 100
800
Iahub will choose exercises a[1][1] → a[1][2] → a[2][2] → a[3][2] → a[3][3]. Iahubina will choose exercises a[3][1] → a[2][1] → a[2][2] → a[2][3] → a[1][3].
题意:A从左上角走向右下角(只能向下和向右),B从左下走向右上(只能向上和向右),A与B只能相交一次,每个点都带有相应的值,除了AB相交的点以外,问他们二者所走的路线所带的权值最大为多少(不加相交点)。
思路:因为A,B只能相交于一点,所以不能交于边,当在边上时必定会有两个或两个以上的交点。这个题目可以理解为找某点,这个点的四个方向的dp值和最大。至于代码最后面两步求Max,下图给出解释:所找点的四周可能为一下两种可能,因此要分两次找最大值。
JavaAC代码:
import java.util.*;
public class Main {
final static int MAX = 1010;
public static void main(String[] args){
Scanner cin = new Scanner(System.in);
int n = cin.nextInt();
int m = cin.nextInt();
while(cin.hasNext()){
int [][]maze = new int [MAX][MAX];
int [][]dp1 = new int[MAX][MAX];
int [][]dp2 = new int[MAX][MAX];
int [][]dp3 = new int[MAX][MAX];
int [][]dp4 = new int[MAX][MAX];
for(int i=1;i<=n;++i){
for(int j=1;j<=m;++j){
maze[i][j] = cin.nextInt();
}
}
for(int i=1;i<=n;++i){
for(int j=1;j<=m;++j){
dp1[i][j] = Math.max(dp1[i-1][j],dp1[i][j-1]) + maze[i][j];
}
}
for(int i=n;i>=1;--i){
for(int j=1;j<=m;++j){
dp2[i][j] = Math.max(dp2[i][j-1],dp2[i+1][j]) + maze[i][j];
}
}
for(int i=1;i<=n;++i){
for(int j=m;j>=1;--j){
dp3[i][j] = Math.max(dp3[i][j+1], dp3[i-1][j]) + maze[i][j];
}
}
for(int i=n;i>=1;--i){
for(int j=m;j>=1;--j){
dp4[i][j] = Math.max(dp4[i+1][j], dp4[i][j+1]) + maze[i][j];
}
}
int Max = -10000000;
for(int i=2;i<n;++i){
for(int j=2;j<m;++j){
Max = Math.max(Max,dp1[i][j-1]+dp2[i+1][j]+dp3[i-1][j]+dp4[i][j+1]);
Max = Math.max(Max,dp1[i-1][j]+dp2[i][j-1]+dp3[i][j+1]+dp4[i+1][j]);
}
}
System.out.println(Max);
}
}
}