2746:约瑟夫问题
- 总时间限制: 1000ms
内存限制: 65536kB
-
描述
-
约瑟夫问题:有n只猴子,按顺时针方向围成一圈选大王(编号从1到n),从第1号开始报数,一直数到m,数到m的猴子退出圈外,剩下的猴子再接着从1开始报数。就这样,直到圈内只剩下一只猴子时,这个猴子就是猴王,编程求输入n,m后,输出最后猴王的编号。
输入
-
每行是用空格分开的两个整数,第一个是 n, 第二个是 m ( 0 < m,n <=300)。最后一行是:
0 0
输出
-
对于每行输入数据(最后一行除外),输出数据也是一行,即最后猴王的编号
样例输入
-
6 2 12 4 8 3 0 0
样例输出
-
5 1 7
-
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。
-
我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2并且从k开始报0。
-
现在我们把他们的编号做一下转换:k --> 0
-
k+1 --> 1
-
k+2 --> 2
-
......k-2 --> n-2
-
k-1 --> n-1 变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!如何变回去。 变回去的公式很简单,即: x'=(x+k)%n
-
如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题! 递推公式: 令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n] 递推公式 f[1]=0;f[i]=(f[i-1]+m)%i; (i>1) 有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1。
-
代码:
-
#include <iostream> using namespace std; int main() { int n, m, i, s=0; while(cin>>n>>m&&n!=0&&m!=0) { s=0; for (i=2; i<=n; i++) //n个人就循环到n,n-1个人就循环到n-1 s=(s+m)%i; cout<<s+1<<endl; } return 0; }
-