滑动窗口法n个相邻数乘积的最大值
题目
The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832.
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
概念引入:逆运算
逆运算是一种对应法则,假设A是一个非空集合,对A中的任意两个元素a和b,通过某种法则X,使A中有唯一确定的元素c与他们对应,我们说这个法则就是A中的一种运算。
如果已知c和a,b中的一个,按照某种法则W可以得到另一个元素,那么在集合A上,这样的法则W称为法则X的逆运算。
- 在实数集上,减法是加法的逆运算,反过来不成立。
- 在非零整数集上,除法是乘法的逆运算,反过来不成立。
- 题目中所涉及的数据范围为10以内的非负整数(包括0)
- 由于在0处,除法不能成为乘法的逆运算,所以需要对0处特殊处理。
- 定义一个变量计算0的个数,一进一出,当0的个数为零,得到的乘积才有意义
代码如下
头文件:
#ifndef _8_H
#define _8_H
char num[1005] =
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450";
#endif
主函数:
#include<stdio.h>
#include<inttypes.h>
#include "8.h"
int main() {
int64_t zero = 0, ans = 1, max_n = 0;
for (int64_t i = 0; num[i]; ++i) {
if (num[i] != '0') ans *= (num[i] & 15);
else zero++;
if (i >= 13) {
if (num[i - 13] != '0') ans /= (num[i - 13] & 15);
else zero--;
}
if (!zero && ans > max_n) max_n = ans;
}
printf("%" PRId64, max_n);
return 0;
}