(100天2小时第二十三天)几种简单填充缺失值的方法

一、固定值填充

df1['Age']=df1['Age'].fillna(20)
print(df1.isnull().sum())#输出时该项已经无缺失值

二、均值填充

# 数据需是int或float类型
df['Age'] = df['Age'].fillna(df['Age'] .mean())

三、众数填充

# 数据需是int或float类型
df['Age'] = df['Age'].fillna(df['Age'] .mode()) 

四、上下数据填充

# 用前一个非缺失值填充
 df['Age'] = df['Age'].fillna(method='pad') 

# 用后一个非缺失值填充
 df['Age'] = df['Age'].fillna(method='bfill') 

五、插值法填充

#前后非缺失值的均值填充
 df['Age'] = df['Age'].interpolate() 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值