Java实现归并排序算法

 

1. 归并排序原理图解

 

归并排序是一种分治算法,其核心思想是将数组分成两半,分别对这两半进行排序,然后将排序后的两半合并。以下是归并排序的步骤:

 

1. 分治:

   - 将数组分成两半。

   - 递归地对每半部分进行归并排序。

 

2. 合并:

   - 将两个已排序的子数组合并成一个排序后的数组。

 

图解示例:

 

假设数组为 `[38, 27, 43, 3, 9, 82, 10]`。

 

1. 初始状态:`[38, 27, 43, 3, 9, 82, 10]`

2. 分治过程:

   - 分成两半:`[38, 27, 43]` 和 `[3, 9, 82, 10]`

   - 继续分治:

     - 左半部分:`[38]` 和 `[27, 43]`

     - 右半部分:`[3, 9]` 和 `[82, 10]`

3. 合并过程:

   - 合并左半部分:`[27, 38, 43]`

   - 合并右半部分:`[3, 9, 10, 82]`

   - 最终合并:`[3, 9, 10, 27, 38, 43, 82]`

 

 2. Java代码实现及注释

 

```java

import java.util.Arrays;

 

public class MergeSort {

    public static void main(String[] args) {

        int[] array = {38, 27, 43, 3, 9, 82, 10};

        mergeSort(array);

        System.out.println("排序后的数组:");

        System.out.println(Arrays.toString(array));

    }

 

    // 归并排序主方法

    public static void mergeSort(int[] arr) {

        if (arr.length < 2) {

            return;

        }

        int mid = arr.length / 2;

        int[] left = Arrays.copyOfRange(arr, 0, mid);

        int[] right = Arrays.copyOfRange(arr, mid, arr.length);

 

        // 递归排序左右两部分

        mergeSort(left);

        mergeSort(right);

 

        // 合并排序后的两部分

        merge(arr, left, right);

    }

 

    // 合并两个已排序的数组

    private static void merge(int[] arr, int[] left, int[] right) {

        int i = 0, j = 0, k = 0;

        while (i < left.length && j < right.length) {

            if (left[i] <= right[j]) {

                arr[k++] = left[i++];

            } else {

                arr[k++] = right[j++];

            }

        }

        while (i < left.length) {

            arr[k++] = left[i++];

        }

        while (j < right.length) {

            arr[k++] = right[j++];

        }

    }

}

```

3. 代码说明

 

1. 分治过程:

   - 将数组分成两半,递归地对每半部分进行排序。

 

2. 合并过程:

   - 使用两个指针分别遍历两个已排序的子数组,将较小的元素依次放入结果数组中。

   - 处理剩余元素,将未遍历完的子数组中的元素直接复制到结果数组中。

 

3. 时间复杂度:

   - **最坏情况**:`O(n log n)`。

   - **平均情况**:`O(n log n)`。

   - **最好情况**:`O(n log n)`。

 

4. 空间复杂度:

   - `O(n)`,因为需要额外的数组空间来存储子数组。

 

5. 稳定性:

   - 归并排序是**稳定的**,因为合并过程中相同值的元素的相对顺序不会改变。

 

4. 应用场景

 

1. 大规模数据排序:

   - 归并排序的时间复杂度稳定在 `O(n log n)`,适合对大规模数据进行排序。

 

2. 外部排序:

   - 归并排序适合用于外部排序,即数据量大于内存容量时的排序。

 

3. 需要稳定性的排序:

   - 当需要保持相同值元素的相对顺序时,归并排序是一个不错的选择。

 

4. 教学和演示:

   - 归并排序的实现清晰,适合用于教学和算法演示。

 

 5. 总结

 

归并排序是一种高效的分治排序算法,具有稳定的时间复杂度和稳定性。它的主要缺点是需要额外的内存空间来存储子数组。在实际应用中,归并排序适用于大规模数据排序和需要稳定性的场景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值