记得高二时侯,做过这么样一道题目,如今还
记忆犹新,题目是这样的:
0,1,2,3,4,5,6能走成若干没有重复数字的七位数(共7!-6!种)
问是存在是55的倍数的?若存在,是那些,并且列出最小和最大值;若不存在,请说明理由。
下面用初等数论知识进行解答
有点繁,还是放到最后吧!
0,1,2,3,4,5,6能走成若干没有重复数字的七位数(共7!-6!种)
问是存在是55的倍数的?若存在,是那些,并且列出最小和最大值;若不存在,请说明理由。
下面用初等数论知识进行解答
有点繁,还是放到最后吧!
昨天,我请一个同学为该题编程,他说:“太小,么必要编程。”
顿时,我寒心了。也许真是那样,但我没有方弃。
经过连续几个小时思考,我便写了,如下代码:
这是用数学方法的解题过程:
这是用数学方法的解题过程:
假设存在这样的七位数N=
abcdefg,
其中,a,b
,c,d,e,f,g为0,1,2,3,4,5,6的一个排列
从而,A=a+b+c+d+e+f+g=0+1+2+3+4+5+6=21
我们知道:
若ab|c且(a,b)=1,则a|c且b|c
要使55整除N,必须让5整除N且11整除N。
于是,g=0或5
B=a-b+c-d+e-f+g=11k, k为整数。
若a=0,则-10<B<10
那么,k只能取0
然而,A+B=2(a+c+e)=21
根据奇偶分析法,知
这是不可能的
若a=5,则-4<B<16
那么,k可能取0,1
当k=0时,由类似上面的方法知, 这也是不可能的
当k=1时,A+B=2(a+c+e)=22
A-B=2(b+d+f)=10
即 a+c+e=11
b+d+f=5
显然,b,d,f有一个是0
否则,b+d+f>=1+2+3=6>5
又 5能分解成1和4,2和3的组合
所以 b,d,f是0,1,4或0,2,3的一个排列
当b,d,f是0,1,4的一个排列时,a,c,e是2,3,6的一个排列
当b,d,f是0,2,3的一个排列时,a,c,e是1,4,6的一个排列
故 存在N,共计72种。依次为:
6431205,... ,6031245 ,6034215 ,... ,1042635
其中,最大的是6431205 ,最小的是1042635
由于是初学者,又不善指出请多多斧正。