数论问题的解法举例(1)

  数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事。因而有人说:用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

  数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有:

  1.带余除法:若ab是两个整数,b0,则存在两个整数qr,使得

  a=bq+r0≤rb),

  且qr是唯一的。

  特别地,如果r=0,那么a=bq。这时,ab整除,记作b|a,也称ba的约数,ab的倍数。

  2.若a|cb|c,且ab互质,则ab|c

  3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即

 

                                       

 

 

  其中p1p2pk为质数,a1a2ak为自然数,并且这种表示是唯一的。(1)式称为n的质因数分解或标准分解。

  4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:

  dn=a1+1)(a2+1ak+1)。

  5.整数集的离散性:nn+1之间不再有其他整数。因此,不等式xyx≤y-1是等价的。

  下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法

  对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。这些常用的形式有:

  1.十进制表示形式:n=an10n+an-110n-1+…+a0

  2.带余形式:a=bq+r

  

  42的乘方与奇数之积式:n=2mt,其中t为奇数。

 

  例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。问:红、黄、蓝3张卡片上各是什么数字?

 

                                  

 

 

  解:设红、黄、白、蓝色卡片上的数字分别是a3a2a1a0,则这个四位数可以写成

  1000a3+100a2+10a1+a0

  它的各位数字之和的10倍是

  10a3+a2+a1+a0=10a3+10a2+10a1+10a0

  这个四位数与它的各位数字之和的10倍的差是

  990a3+90a2-9a0=1998

  110a3+10a2-a0=222

  比较上式等号两边个位、十位和百位,可得

  a0=8a2=1a3=2

  所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8

 

 

 

  解:依题意,得

 

 

 

                 

 

 

 

 

                                              a+b+c14

 

 

 

 

  说明:求解本题所用的基本知识是,正整数的十进制表示法和最简单的不定方程。

  例3 从自然数1231000中,最多可取出多少个数使得所取出的数中任意三个数之和能被18整除?

 

  解:abcd是所取出的数中的任意4个数,那么

 

  a+b+c=18ma+b+d=18n

 

  其中mn是自然数。于是

  c-d=18m-n)。

 

  上式说明所取出的数中任意2个数之差是18的倍数,即所取出的每个数除以18所得的余数均相同。设这个余数为r,那么

 

  a=18a1+rb=18b1+rc=18c1+r

 

  其中a1b1c1是整数。于是

 

  a+b+c=18a1+b1+c1+3r

 

  因为18|a+b+c),所以18|3r,即6|r,推知r=0612。因为1000=55×18+10,所以,从121000中可取6244299656个数,它们中的任意3个数之和能被18整除。

 

  例4 求自然数N,使得它能被549整除,并且包括1N在内,它共有10个约数。

 

  解:把数N写成质因数乘积的形式

 

                      

 

 

  由于N能被572=49整除,故a3≥1a4≥2,其余的指数ak为自然数或零。依题意,有

 

  (a1+1)(a2+1an+1=10

 

  由于a3+1≥2a4+1≥3,且10=2×5,故

 

  a1+1=a2+1=a5+1=…=an+1=1

 

  即a1=a2=a5=…an=0N只能有2个不同的质因数57,因为a4+1≥32,故由

 

  (a3+1)(a4+1=10

 

  知,a3+1=5a4+1=2是不可能的。因而a3+1=2a4+1=5,即N=52-1×75-1=5×74=12005

 

  例5 如果N123199819992000的最小公倍数,那么N等于多少个21个奇数的积?

 

  解:因为210=1024211=20482000,每一个不大于2000的自然数表示为质因数相乘,其中2的个数不多于10个,而1024=210,所以,N等于102与某个奇数的积。

 

  说明:上述5例都是根据题目的自身特点,从选择恰当的整数表示形式入手,使问题迎刃而解。

 

二、枚举法

  枚举法(也称为穷举法)是把讨论的对象分成若干种情况(分类),然后对各种情况逐一讨论,最终解决整个问题。

 

  运用枚举法有时要进行恰当的分类,分类的原则是不重不漏。正确的分类有助于暴露问题的本质,降低问题的难度。数论中最常用的分类方法有按模的余数分类,按奇偶性分类及按数值的大小分类等。

 

  例6 求这样的三位数,它除以11所得的余数等于它的三个数字的平方和。

 

  分析与解:三位数只有900个,可用枚举法解决,枚举时可先估计有关量的范围,以缩小讨论范围,减少计算量。

 

  设这个三位数的百位、十位、个位的数字分别为xyz。由于任何数除以11所得余数都不大于10,所以

 

  x2+y2+z2≤10

 

  从而1≤x≤30≤y≤30≤z≤3。所求三位数必在以下数中:

 

  100101102103110111112

  120121122130200201202

  211212220221300301310

 

  不难验证只有100101两个数符合要求。

 

  例7 将自然数N接写在任意一个自然数的右面(例如,将2接写在35的右面得352),如果得到的新数都能被N整除,那么N称为魔术数。问:小于2000的自然数中有多少个魔术数?

  

       

  对N为一位数、两位数、三位数、四位数分别讨论。

 

 

     

 

 

            N|100,所以N=10202550

  

            N|1000,所以N=100125200250500

 

  (4)当N为四位数时,同理可得N=10001250200025005000。符合条件的有10001250

 

  综上所述,魔术数的个数为14个。

 

  说明:(1)我们可以证明:k位魔术数一定是10k的约数,反之亦然。

      (2)这里将问题分成几种情况去讨论,对每一种情况都增加了一个前提条件,从而降低了问题的难度,使问题容易解决。

 

8 3张扑克牌,牌面数字都在10以内。把这3张牌洗好后,分别发给小明、小亮、小光3人。每个人把自己牌的数字记下后,再重新洗牌、发牌、记数,这样反复几次后,3人各自记录的数字的和顺次为131523。问:这3张牌的数字分别是多少?

 

解:13+15+23=5151=3×17

 

  因为1713,摸17次是不可能的,所以摸了3次, 3张扑克牌数字之和是17,可能的情况有下面15种:

 

  ①1610  ②179  ③188

  ④2510  ⑤269  ⑥278

  ⑦3410  ⑧359  ⑨368

  ⑩377  (11)449 (12)458

  (13)467 (14)557 (15)566

 

  只有第种情况可以满足题目要求,即

  3+5+5=133+3+9=155+9+9=23

 

  这3张牌的数字分别是359

 

9 写出12个都是合数的连续自然数。

 

  分析一:在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90919293949596。我们把筛选法继续运用下去,把考查的范围扩大一些就行了。

 

解法1:用筛选法可以求得在113127之间共有12个都是合数的连续自然数:

 

  114115116117118119120

  121122123124125126

 

  分析二:如果12个连续自然数中,第1个是2的倍数,第2个是3的倍数,第3个是4的倍数……12个是13的倍数,那么这12个数就都是合数。

 

  又m+2m+3m+1312个连续整数,故只要m2313的公倍数,这12个连续整数就一定都是合数。

 

解法2:设m2341312个数的最小公倍数。m+2m+3m+4m+13分别是2的倍数,3的倍数,4的倍数……13的倍数,因此12个数都是合数。

 

  说明:我们还可以写出

  13+213+313+13

 

  (其中n=1×2×3×…×n)这12个连续合数来。

 

  同样,

  (m+1)!+2,(m+1)!+3,(m+1)!+m+1m连续的合数。

 

         

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值