【每日一题】day23_02 计算字符串的距离

学习目标:

目标:熟练运用Java所学知识


学习内容:

本文内容:使用java解决 :计算字符串的距离


题目描述

链接:https://www.nowcoder.com/questionTerminal/3959837097c7413a961a135d7104c314
来源:牛客网

Levenshtein
距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein
Distance。

Ex:

字符串A:abcdefg

字符串B: abcdef

通过增加或是删掉字符”g”的方式达到目的。这两种方案都需要一次操作。把这个操作所需要的次数定义为两个字符串的距离。

要求:

给定任意两个字符串,写出一个算法计算它们的编辑距离。

本题含有多组输入数据。

输入描述:

每组用例一共2行,为输入的两个字符串

输出描述:

每组用例输出一行,代表字符串的距离

示例1

输入:

abcdefg

abcdef

abcde

abcdf

abcde

bcdef

输出:

1

1

2

解题思路

这是一道动态规划题目
先来看一下删除添加修改的例子,以下三个例子都是只需要一步得到的
①删除
在这里插入图片描述
②添加
在这里插入图片描述

③修改
在这里插入图片描述


在看下面一组例子:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

通过以上例子我们会发现,当只有一个字符串向下递归一个字符时,都可以通过添加或删除一个得到上一步的状态,所以只需要在上一步的基础上加一步解决问题,当两个字符串都向下递归一个字符时,只需要改变其中的一个字符从而解决,也是上一步的基础上多了一步

状态:

定义F(i,j):str1的前 i 个与 str2 的前 j 个字符的编辑距离

递推关系

F(i,j)=min{F(i-1,j)+1 , F(i,j-1)+1 , F(i-1,j-1) + (str[i-1] ==str[j-1] ? 0 : 1 )}
表示从删除增加修改中选择一个最小的操作数

初始化

F(i,0)=i; str1与空串的编辑距离
F(0.j)=j; 空串与str2的编辑距离

实现代码

import java.util.*;
public class Main {
    public static void main(String[] args){
        Scanner sc=new Scanner(System.in);
        while(sc.hasNext()){
            String str1=sc.next();
            String str2=sc.next();
            int[][] res=new int[str1.length()+1][str2.length()+1];
            res[0][0]=0;//初始化
            for(int i=1;i<=str1.length();i++){
                //初始化第一列
                res[i][0]=res[i-1][0]+1;
            }
            for(int j=1;j<=str2.length();j++){
                //初始化第一行
                res[0][j]=res[0][j-1]+1;
            }
            for(int i=1;i<=str1.length();i++){
                for(int j=1;j<=str2.length();j++){
                    res[i][j]=Math.min(res[i-1][j],res[i][j-1])+1;
                    if(str1.charAt(i-1)==str2.charAt(j-1)){
                        //当前位置字符相等
                        res[i][j]=Math.min(res[i][j],res[i-1][j-1]);
                    }else{
                        //当前位置字符不相等
                        res[i][j]=Math.min(res[i][j],res[i-1][j-1]+1);
                    }
                }
            }
            System.out.println(res[str1.length()][str2.length()]);
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值