学习目标:
目标:熟练运用Java所学知识
学习内容:
本文内容:使用java解决 :计算字符串的距离
题目描述
链接:https://www.nowcoder.com/questionTerminal/3959837097c7413a961a135d7104c314
来源:牛客网
Levenshtein
距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein
Distance。
Ex:
字符串A:abcdefg
字符串B: abcdef
通过增加或是删掉字符”g”的方式达到目的。这两种方案都需要一次操作。把这个操作所需要的次数定义为两个字符串的距离。
要求:
给定任意两个字符串,写出一个算法计算它们的编辑距离。
本题含有多组输入数据。
输入描述:
每组用例一共2行,为输入的两个字符串
输出描述:
每组用例输出一行,代表字符串的距离
示例1
输入:
abcdefg
abcdef
abcde
abcdf
abcde
bcdef
输出:
1
1
2
解题思路
这是一道动态规划题目
先来看一下删除添加修改的例子,以下三个例子都是只需要一步得到的
①删除
②添加
③修改
在看下面一组例子:
通过以上例子我们会发现,当只有一个字符串向下递归一个字符时,都可以通过添加或删除一个得到上一步的状态,所以只需要在上一步的基础上加一步解决问题,当两个字符串都向下递归一个字符时,只需要改变其中的一个字符从而解决,也是上一步的基础上多了一步
状态:
定义F(i,j):str1的前 i 个与 str2 的前 j 个字符的编辑距离
递推关系
F(i,j)=min{F(i-1,j)+1 , F(i,j-1)+1 , F(i-1,j-1) + (str[i-1] ==str[j-1] ? 0 : 1 )}
表示从删除增加修改中选择一个最小的操作数
初始化
F(i,0)=i; str1与空串的编辑距离
F(0.j)=j; 空串与str2的编辑距离
实现代码
import java.util.*;
public class Main {
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
while(sc.hasNext()){
String str1=sc.next();
String str2=sc.next();
int[][] res=new int[str1.length()+1][str2.length()+1];
res[0][0]=0;//初始化
for(int i=1;i<=str1.length();i++){
//初始化第一列
res[i][0]=res[i-1][0]+1;
}
for(int j=1;j<=str2.length();j++){
//初始化第一行
res[0][j]=res[0][j-1]+1;
}
for(int i=1;i<=str1.length();i++){
for(int j=1;j<=str2.length();j++){
res[i][j]=Math.min(res[i-1][j],res[i][j-1])+1;
if(str1.charAt(i-1)==str2.charAt(j-1)){
//当前位置字符相等
res[i][j]=Math.min(res[i][j],res[i-1][j-1]);
}else{
//当前位置字符不相等
res[i][j]=Math.min(res[i][j],res[i-1][j-1]+1);
}
}
}
System.out.println(res[str1.length()][str2.length()]);
}
}
}