A non-linear ,distance-based choice function ,that chooses ,among the proposed vectors ,the vector “closest to everyone else”

Krum 在 m 个局部模型中选择一个与其他模型相似的模型作为全局模型。
将梯度与其它梯度的范数距离的和作为该梯度的得分,然后选取得分最低,即“和大多数梯度都相似”的梯度作为聚合梯度。Krum不会影响模型的正常收敛,并且在攻击者控制worker的占比不超过50%的情况下能保证模型的鲁棒性。
Reference