正向传播与反向传播(forward-propagation & back-propagation)

本文介绍了正向传播和反向传播在神经网络中的作用。正向传播是从输入到输出的计算过程,反向传播则利用链式法则计算参数梯度。在训练模型时,两者交替进行,反向传播的梯度计算用于优化模型参数。理解反向传播的基本原理——链式法则,是深度学习的关键之一。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正向传播(forward-propagation):指对神经网络沿着输入层到输出层的顺序,依次计算并存储模型的中间变量

反向传播(back-propagation):沿着从输出层到输入层的顺序,依据链式法则,依次计算并存储目标函数有关神经网络各层的中间变量以及参数的梯度

反向传播是一种计算神经网络参数梯度的方法

对于输入或输出X,Y,Z为任意形状张量的函数 Y=f(x) 和 Z=g(Y) 通过链式法则,则有:

                                                                        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值