这是一份关于CTA策略中参数选择、品种选择和投资组合构建的详细经验教程。这更多是基于量化交易的视角,因为CTA策略的核心在于系统化和纪律性。
核心理念: CTA策略的目标通常不是预测市场,而是通过系统化的方法捕捉市场(尤其是期货市场)的某些行为模式(如趋势、均值回归、波动性等),并通过多元化来管理风险,追求长期稳健的风险调整后收益。
第一部分:策略参数选择 (Parameter Selection)
参数选择是CTA策略开发中的关键一步,直接影响策略表现和稳健性。目标是找到一组不过度拟合历史数据,并在未来可能表现良好的参数。
-
理解参数的意义:
- 参数是什么? 策略中可调整的变量,例如移动平均线的周期、突破的阈值、止损的幅度、持仓时间限制、波动率计算周期等。
- 参数的作用? 决定了策略何时入场、何时出场、持有多大仓位等具体行为。例如,短周期均线对价格变化更敏感,捕捉短趋势,但也可能产生更多噪音;长周期均线更平滑,捕捉长趋势,但滞后性更强。
-
参数选择的目标:稳健性 (Robustness) 而非最优性 (Optimality)
- 过度拟合 (Overfitting): 指策略参数在历史回测中表现极好,但在样本外数据或实盘中表现糟糕。这是因为参数过于“迁就”历史数据的特定噪音,而非捕捉到底层规律。
- 稳健性: 指策略在参数小幅变动、不同市场环境、不同时间段下,表现相对稳定,不会急剧恶化。这是我们追求的目标。
-
常用的参数选择方法:
- 经验法/逻辑法: 基于对市场和策略逻辑的理解,设定一个合理的初始范围。例如,做日内突破,参考ATR(平均真实波幅)设定突破阈值;做长期趋势,选择较长的均线周期(如50, 100, 200天)。这种方法依赖经验,但能避免完全盲目的搜索。
- 参数敏感性分析 (Parameter Sensitivity Analysis):
- 方法: 选择一个或两个核心参数,在一个较宽的合理范围内进行遍历测试(Grid Search)。例如,测试双均线策略时,测试短期均线周期从5到50(步长5),长期均线周期从20到200(步长10)。
- 观察: 绘制参数平面图(Parameter Heatmap),观察策略表现(如夏普比率、年化收益、最大回撤)随参数变化的“地形图”。
- 选择: 寻找表现良好且平坦的区域 (Plateau),而不是孤立的“尖峰 (Spike)”。平坦区域意味着参数微小变动对结果影响不大,策略更稳健。避免选择位于悬崖边上的参数点。
- 步进优化 (Walk-Forward Optimization