好的,我们来整理一份关于国联证券《量化CTA系列报告——线性趋势策略和展期策略》的深度总结,并附上基于Python的策略实现思路。
报告核心内容深度总结与策略复现
目录
-
报告核心内容深度总结
- 1.1 CTA策略概述与收益来源
- 1.2 线性趋势策略详解
- 1.2.1 策略逻辑
- 1.2.2 因子构建示例 (STM, VwapLim)
- 1.2.3 策略评价与组合
- 1.3 展期策略 (Term Structure / Roll Yield) 详解
- 1.3.1 策略逻辑 (Contango/Backwardation)
- 1.3.2 因子构建示例 (BTG)
- 1.3.3 策略评价
- 1.4 策略组合与优化
- 1.4.1 组合优势 (低相关性)
- 1.4.2 组合方法 (简单加权, Markowitz)
- 1.5 风险提示
-
Python策略实现与代码示例 (基于Backtrader)
- 2.1 环境准备与数据模拟
- 2.2 线性趋势策略 (STM因子) 实现
- 2.2.1 STM因子计算
- 2.2.2 Backtrader策略类
- 2.3 展期策略 (BTG因子) 实现思路
- 2.3.1 BTG因子计算思路
- 2.3.2 Backtrader策略类 (简化版)
- 2.4 策略回测与简单组合
- 2.4.1 单策略回测
- 2.4.2 等权重组合展示
- 2.5 代码实现的局限性与扩展
1. 报告核心内容深度总结
-
1.1 CTA策略概述与收益来源
- 表现特征: CTA策略(尤其是趋势跟踪)自2000年以来表现出显著的非线性收益特征,指数稳步上升。在市场波动率放大时(如危机期间)表现尤为突出(阶跃式上升),体现了"危机Alpha"的特性,与传统权益类资产相关性较低。
- 核心收益来源: 报告明确指出CTA策略的两大核心收益来源:
- 趋势延续性: 捕捉价格在一定方向上持续运动带来的收益(动量效应)。金融市场(包括商品期货)的价格波动呈现"肥尾"特征,单边行情一旦出现,持续性往往较强。
- 展期收益 (Roll Yield): 利用期货合约远近月之间的价差结构(升水Contango / 贴水Backwardation)进行展期操作获取的收益。做多远月贴水(Backwardation)的品种或做空远月升水(Contango)的品种理论上能获得正展期收益。这与商品库存周期、供需关系紧密相关。
-
1.2 线性趋势策略详解
- 1.2.1 策略逻辑: 旨在捕捉价格的持续性运动。报告中区分了不同频率的趋势策略:
- 低频: 结合宏观经济周期、季节性、基本面数据(库存、持仓、现货、仓单等)进行量化建模或主观判断。
- 中高频/分钟级: 主要依赖量价因子、盘口因子等技术指标。这类策略的特点是信号值越大,持仓规模也越大(线性)。
- 1.2.2 因子构建示例 (STM, VwapLim):
- STM (Simple Trend Measure? / Short-Term Momentum?): 报告图19展示了一个基于N周期最高价(HH)和最低价(LL)构建的动量因子。
因子值 = (收盘价 - (HH+LL)/2) / (HH - LL)
。该因子衡量当前价格在近期波动区间内的相对位置,值接近1表示强势上涨,接近-1表示强势下跌。报告通过IC(信息系数)、半衰期、分档收益等方式评价了不同参数STM因子的有效性,并选取低相关性的参数进行组合(图20-25)。 - VwapLim (Volume Weighted Average Price Limit?): 报告图26描述了一个基于高频数据的因子,思路是比较成交量最大的若干笔订单的成交均价(VwapLim)与该时间段内所有订单的成交均价(Vwap)的差异。
因子值 = VwapLim / Vwap - 1
。若大单均价显著高于全体均价,可能预示着买方力量强劲,因子值为正,反之为负。这需要Tick或快照数据支持。报告显示STM和VwapLim因子相关性较低(图27),组合效果更好(图28, 29)。
- STM (Simple Trend Measure? / Short-Term Momentum?): 报告图19展示了一个基于N周期最高价(HH)和最低价(LL)构建的动量因子。
- 1.2.3 策略评价与组合: 报告强调因子评价的重要性(预测能力、稳定性/半衰期、与其他因子的相关性)。对于分钟级CTA,由于数据量相对有限,简单的线性加权组合因子(如图28)通常比复杂的机器学习模型(如神经网络)更稳定、可解释性更强,且能有效降低单因子失效风险。策略收益主要由黑色和金属板块贡献(图30-32)。
- 1.2.1 策略逻辑: 旨在捕捉价格的持续性运动。报告中区分了不同频率的趋势策略:
-
1.3 展期策略 (Term Structure / Roll Yield) 详解
- 1.3.1 策略逻辑: 利用期货合约的期限结构获利。
- Contango(升水): 远月合约价格 > 近月合约价格。通常出现在库存高企、供应过剩或持有成本较高的情况下。做空远月合约随时间推移价值向现货(近月)收敛可能获利。
- Backwardation(贴水): 远月合约价格 < 近月合约价格。通常出现在库存紧张、需求旺盛或存在便利收益的情况下。做多远月合约随时间推移价值向现货(近月)收敛可能获利。
- 策略核心是做多贴水最大(最Backwardation)的品种,同时做空升水最大(最Contango)的品种(图33, 34)。
- 1.3.2 因子构建示例 (BTG - Basis Trading?)
- 报告图35展示了BTG因子的构建思路:
- 用最近月合约价格(
SpotPx
)近似替代现货价格。 - 获取各合约价格(
FutPx
)和剩余交易日(Rdays
)。 - 计算每个合约的年化展期收益率:
Cret = [log(FutPx) – log(SpotPx)] * 365 / Rdays / 100.0
。 - 将同一品种下所有合约的
Cret
用成交量加权,得到该品种的综合展期因子值FctCret
。 - 每日对所有品种的
FctCret
进行升序排名,得到FctCret_RankAsc
,即BTG因子。排名越靠前,贴水越严重(或升水越小);排名越靠后,升水越严重(或贴水越小)。
- 用最近月合约价格(
- 报告图35展示了BTG因子的构建思路:
- 1.3.3 策略评价: 报告通过回测不同持仓数量N(做多排名最小N个,做空排名最大N个)的效果(图37),并展示了策略的换手率(图38)。
- 1.3.1 策略逻辑: 利用期货合约的期限结构获利。
-
1.4 策略组合与优化
- 1.4.1 组合优势: 报告的核心亮点在于展示了线性趋势策略和展期策略的负相关性(图39,相关系数-2.57%)。这意味着两者收益来源不同,组合在一起能够显著平滑净值曲线,降低回撤,提高夏普比率。这体现了策略开发的“边际提升”效应:研究不同逻辑的策略比过度优化单一策略更能带来显著的绩效提升。
- 1.4.2 组合方法:
- 简单加权: 最直接的方法是按固定比例(如1:1)分配资金给两种策略(图40, 41)。
- Markowitz优化: 利用历史收益率数据计算两种策略的均值、方差和协方差,构建有效前沿(图42),根据投资者的风险偏好(如最大化夏普比率、最大化收益等)确定最优权重(图43, 44)。报告对比了简单组合、最大化收益、最大化夏普三种模式下的组合表现。结果显示不同优化模式差异不大,再次印证了策略组合本身的鲁棒性。
-
1.5 风险提示
- 模型依赖历史数据和统计规律,市场环境变化可能导致模型失效。
- 因子构建和策略逻辑基于特定假设,假设不成立则策略可能失效。
- 高频因子实现对交易系统和速度要求高。
- 展期策略依赖于期限结构的持续性,结构突变可能带来损失。
2. Python策略实现与代码示例 (基于Backtrader)
我们将使用backtrader
库来演示策略的基本实现。backtrader
是一个功能强大且灵活的Python量化回测框架。
- 2.1 环境准备与数据模拟
# 安装 backtrader
# pip install backtrader matplotlib
import backtrader as bt
import pandas as pd
import numpy as np
import datetime
import matplotlib.pyplot as plt
# 模拟数据函数 (实际应用中需要接入真实/购买的期货数据)
def generate_dummy_futures_data(symbol, start_date, end_date, roll_yield_factor=0.0):
"""生成模拟的日度期货OHLCV数据和简化的展期因子"""
dates = pd.date_range(start_date, end_date)
data_len = len(dates)
# 简单随机游走模拟价格
price = 100.0
prices = []
for _ in range(data_len):
price += np.random.randn() * 1.0 # 日度波动
prices.append(price)
df = pd.DataFrame(index=dates)
df['open'] = np.array(prices) - np.random.rand(data_len) * 0.5
df['high'] = np.array(prices) + np.random.rand(data_len) * 1.0
df['low'] = np.array(prices) - np.random.rand(data_len) * 1.0
df['close'] = prices
df['volume'] = np.random.randint(10000, 100000, size=data_len)
df['openinterest'] = 0 # backtrader需要此列,但我们模拟中不用
# 模拟简化的展期因子 (实际因子需要更复杂的计算)
# 这里用一个固定的偏移+噪声来代表不同品种的平均升贴水情况
df['roll_yield'] = roll_yield_factor + np.random.randn(data_len) * 0.0005
# 保证 low <= open/close <= high
df['low'] = df[['low', 'open', 'close']].min(axis=1)
df['high'] = df[['high', 'open', 'close']].max(axis=1)
return df
# --- 主程序中创建数据 ---
start = datetime.datetime(2018, 1, 1)
end = datetime.datetime(2022, 12, 31)
# 假设我们有三个品种,模拟不同的平均展期因子
# 品种A: 倾向于贴水 (roll_yield < 0)
data_a = generate_dummy_futures_data('FutureA', start, end, roll_yield_factor=-0.001)
# 品种B: 中性
data_b = generate_dummy_futures_data('FutureB', start, end, roll_yield_factor=0.0)
# 品种C: 倾向于升水 (roll_yield > 0)
data_c = generate_dummy_futures_data('FutureC', start, end, roll_yield_factor=0.001)
# 转换为 Backtrader 的数据格式
data_feed_a = bt.feeds.PandasData(dataname=data_a, name='FutureA')
data_feed_b = bt.feeds.PandasData(dataname=data_b, name='FutureB')
data_feed_c = bt.feeds.PandasData(dataname=data_c, name='FutureC')
- 2.2 线性趋势策略 (STM因子) 实现
class LinearTrendSTM(bt.Strategy):
params = (
('stm_period', 90), # STM因子周期,参考报告图20选择一个中期参数
('printlog', False),
)
def __init__(self):
self.stm = {}
for d in self.datas:
# 计算 STM 因子所需的最高价和最低价
highest_high = bt.indicators.Highest(d.high(-1), period=self.params.stm_period) # 使用前一bar的数据避免未来函数
lowest_low = bt.indicators.Lowest(d.low(-1), period=self.params.stm_period)
# 计算 STM 因子 (报告中的优化公式)
hh_ll_range = highest_high - lowest_low
mid_point = (highest_high + lowest_low) / 2
# 避免除以零
# 当区间极小或者为0时,因子信号不明确,设为0
self.stm[d._name] = bt.If(hh_ll_range > 1e-6, # 添加一个小的阈值
(d.close - mid_point) / hh_ll_range,
0.0)
# self.stm[d._name] = (d.close - lowest_low) / hh_ll_range # 原始公式的一种形式, 值域[0,1]
self.order = None # 跟踪订单状态
def log(self, txt, dt=None, doprint=False):
''' 日志记录 '''
if self.params.printlog or doprint:
dt = dt or self.datas[0].datetime.date(0)
print(f'{dt.isoformat()} {txt}')
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
# Buy/Sell order submitted/accepted to/by broker - Nothing to do
return
# Check if an order has been completed
if order.status in [order.Completed]:
if order.isbuy():
self.log(f'BUY EXECUTED, Price: {order.executed.price:.2f}, Cost: {order.executed.value:.2f}, Comm: {order.executed.comm:.2f}, Name: {order.data._name}')
elif order.issell():
self.log(f'SELL EXECUTED, Price: {order.executed.price:.2f}, Cost: {order.executed.value:.2f}, Comm: {order.executed.comm:.2f}, Name: {order.data._name}')
self.bar_executed = len(self)
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log(f'Order Canceled/Margin/Rejected - Name: {order.data._name}')
self.order = None # 重置订单跟踪
def next(self):
for d in self.datas:
pos = self.getposition(d).size
stm_signal = self.stm[d._name][0]
# 简单的线性映射: 信号强度决定仓位比例 (简化处理)
# 实际CTA会更复杂,考虑风险、资金管理等
# 这里假设总资金的 1/N 分配给该品种,然后根据信号调整比例
target_percent = stm_signal * 0.8 # 假设最大仓位为资金的80% * (1/N)
# 简化交易逻辑:信号 > 0.1 开多, < -0.1 开空, 信号强度决定比例 (更精细的需要资金管理模块)
# 为了演示清晰,用固定大小或简单比例
current_cash = self.broker.get_cash()
current_value = self.broker.get_value()
# 简化仓位管理:假设每个品种分配 1/3 的权益
target_value = current_value / len(self.datas) * stm_signal * 0.9 # 最大90%仓位
if stm_signal > 0.1: # 开多/加多
# self.order_target_percent(data=d, target=target_percent) # 使用目标百分比下单
self.order_target_value(data=d, target=target_value) # 使用目标价值下单
elif stm_signal < -0.1: # 开空/加空
# self.order_target_percent(data=d, target=target_percent)
self.order_target_value(data=d, target=target_value)
elif abs(stm_signal) < 0.05: # 信号减弱,平仓
if pos != 0:
self.log(f'CLOSE POSITION {d._name}, Signal: {stm_signal:.2f}')
# self.order_target_percent(data=d, target=0.0)
self.order_target_value(data=d, target=0.0)
# --- 在主程序中添加策略 ---
# cerebro_stm = bt.Cerebro()
# cerebro_stm.addstrategy(LinearTrendSTM)
# ... 添加数据 ...
# cerebro_stm.run()
- 2.3 展期策略 (BTG因子) 实现思路
报告中的BTG因子需要跨品种截面排序,这在backtrader
的标准Strategy
类中直接实现比较复杂,因为它通常是针对单个数据源(品种)进行迭代。有几种实现思路:
- 预计算因子 + 外部信号文件: 在回测前,每日计算所有品种的BTG因子排名,存入外部文件或数据库。策略类读取当天的排名信号来决定交易。
- 使用
Analyzer
或Observer
: 在每个时间步结束时,通过Analyzer
收集所有品种的FctCret
(需要先计算),进行排序,然后生成交易信号供下一个时间步使用(可能有延迟)。 - 重写
Cerebro
或Strategy
逻辑: 更高级的方式,修改框架的运行机制以支持截面操作。 - 简化版策略(演示用): 不做跨品种排序,而是让每个品种根据自身的(模拟的)
roll_yield
因子值独立决策。例如,roll_yield
非常负(强贴水)时买入,非常正(强升水)时卖出。这与报告的真实逻辑有偏差,仅作演示结构用。
class RollYieldBTGSimplified(bt.Strategy):
params = (
('n_long_short', 5), # 原报告是取N个,这里简化为阈值
('long_entry_threshold', -0.0015), # 假设强贴水阈值
('short_entry_threshold', 0.0015), # 假设强升水阈值
('exit_threshold_factor', 0.5), # 回归到阈值一半时平仓
('printlog', False),
)
def __init__(self):
# 获取模拟数据中的 'roll_yield' 列
self.roll_yield = {d._name: d.roll_yield for d in self.datas}
self.order = None
def log(self, txt, dt=None, doprint=False):
if self.params.printlog or doprint:
dt = dt or self.datas[0].datetime.date(0)
print(f'{dt.isoformat()} {txt}')
def notify_order(self, order):
# (同上一个策略的 notify_order)
if order.status in [order.Submitted, order.Accepted]: return
if order.status in [order.Completed]:
# ... log buy/sell ...
pass
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log(f'Order Canceled/Margin/Rejected - Name: {order.data._name}')
self.order = None
def next(self):
# 真实的BTG需要在这里做截面排序,然后选择Top N和Bottom N
# --- 简化逻辑开始 ---
for d in self.datas:
pos = self.getposition(d).size
ry_signal = self.roll_yield[d._name][0]
current_value = self.broker.get_value()
# 简化仓位管理:假设每个品种分配 1/3 的权益
target_value_abs = current_value / len(self.datas) * 0.9 # 最大90%仓位
if pos == 0: # 没有持仓
if ry_signal < self.params.long_entry_threshold: # 强贴水,开多
self.log(f'BUY CREATE {d._name}, Signal: {ry_signal:.4f}')
self.order_target_value(data=d, target=target_value_abs)
elif ry_signal > self.params.short_entry_threshold: # 强升水,开空
self.log(f'SELL CREATE {d._name}, Signal: {ry_signal:.4f}')
self.order_target_value(data=d, target=-target_value_abs)
elif pos > 0: # 持有多仓
if ry_signal > self.params.long_entry_threshold * self.params.exit_threshold_factor: # 贴水减弱,平多
self.log(f'CLOSE LONG {d._name}, Signal: {ry_signal:.4f}')
self.order_target_value(data=d, target=0.0)
elif pos < 0: # 持有空仓
if ry_signal < self.params.short_entry_threshold * self.params.exit_threshold_factor: # 升水减弱,平空
self.log(f'CLOSE SHORT {d._name}, Signal: {ry_signal:.4f}')
self.order_target_value(data=d, target=0.0)
# --- 简化逻辑结束 ---
# --- 在主程序中添加策略 ---
# cerebro_btg = bt.Cerebro()
# cerebro_btg.addstrategy(RollYieldBTGSimplified)
# ... 添加数据 ...
# cerebro_btg.run()
- 2.4 策略回测与简单组合
def run_backtest(strategy_class, data_feeds, strategy_name, initial_cash=1000000.0):
"""运行单个策略回测并返回净值序列"""
cerebro = bt.Cerebro(stdstats=False) # 关闭默认绘图统计
cerebro.addstrategy(strategy_class)
for feed in data_feeds:
cerebro.adddata(feed)
cerebro.broker.setcash(initial_cash)
# 添加手续费 (示例:万分之一)
cerebro.broker.setcommission(commission=0.0001)
# 添加分析器
cerebro.addanalyzer(bt.analyzers.PyFolio, _name='pyfolio') # 用于生成详细报告
cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='sharpe', timeframe=bt.TimeFrame.Days, compression=1, factor=252, annualize=True)
cerebro.addanalyzer(bt.analyzers.DrawDown, _name='drawdown')
cerebro.addanalyzer(bt.analyzers.Returns, _name='returns')
cerebro.addanalyzer(bt.analyzers.TradeAnalyzer, _name='tradeanalyzer')
print(f'Running Backtest for: {strategy_name}')
results = cerebro.run()
strat = results[0]
print(f'--- {strategy_name} Performance ---')
print(f'Final Portfolio Value: {cerebro.broker.getvalue():.2f}')
print(f'Sharpe Ratio: {strat.analyzers.sharpe.get_analysis().get("sharperatio", "N/A"):.3f}')
max_dd = strat.analyzers.drawdown.get_analysis().max.drawdown
print(f'Max Drawdown: {max_dd:.2f}%')
# 获取净值数据
portfolio_values = strat.analyzers.returns.get_analysis()['rtot']
# 转换为 pandas Series,索引为日期
dates = [bt.num2date(x) for x in strat.analyzers.returns.get_analysis()['time']]
values_series = pd.Series(data=[(1+r)*initial_cash for r in portfolio_values], index=pd.to_datetime(dates))
# 如果需要从 初始资金 开始的净值曲线
initial_date = data_feeds[0].datetime.datetime(0).date() # 获取第一个数据点的日期
# 从 Series 创建 DataFrame
perf_df = pd.DataFrame({strategy_name: values_series})
# 检查 perf_df 是否为空,如果为空则返回空 DataFrame
if perf_df.empty:
print(f"Warning: No returns data generated for {strategy_name}. Check strategy logic and data.")
return pd.DataFrame() # 返回空的 DataFrame
# 确保从初始日期开始,并且值是初始资本
# 需要找到 perf_df 的第一个日期
first_return_date = perf_df.index.min()
# 创建一个包含初始日期的 DataFrame
initial_row = pd.DataFrame({strategy_name: [initial_cash]}, index=[pd.to_datetime(initial_date)])
# 合并初始行和回报 DataFrame
if pd.to_datetime(initial_date) < first_return_date:
perf_df = pd.concat([initial_row, perf_df])
elif pd.to_datetime(initial_date) == first_return_date:
# 如果第一个回报日期就是初始日期,确保初始值正确
perf_df.loc[first_return_date, strategy_name] = initial_cash
else: # 如果数据开始日期晚于回报开始日期(不太可能,但处理一下)
perf_df = pd.concat([initial_row, perf_df]).sort_index()
perf_df = perf_df[~perf_df.index.duplicated(keep='last')] # 去重
# 对齐并填充缺失值(如果需要)
perf_df = perf_df.reindex(pd.date_range(start=initial_date, end=perf_df.index.max()), method='ffill')
# 使用pyfolio生成报告 (可选)
# returns, positions, transactions, gross_lev = strat.analyzers.pyfolio.get_pf_items()
# import pyfolio as pf
# pf.create_full_tear_sheet(returns)
return perf_df # 返回包含净值曲线的DataFrame
# --- 主程序 ---
if __name__ == '__main__':
all_data_feeds = [data_feed_a, data_feed_b, data_feed_c]
initial_cash = 1000000.0
# 运行线性趋势策略
stm_perf = run_backtest(LinearTrendSTM, all_data_feeds, 'LinearTrendSTM', initial_cash)
# 运行简化的展期策略
btg_perf = run_backtest(RollYieldBTGSimplified, all_data_feeds, 'RollYieldBTG', initial_cash)
# 合并两个策略的净值结果 (需要确保索引对齐)
combined_perf = pd.DataFrame()
if not stm_perf.empty:
combined_perf = stm_perf
if not btg_perf.empty:
if combined_perf.empty:
combined_perf = btg_perf
else:
# 使用 outer join 合并,然后前向填充缺失值
combined_perf = combined_perf.join(btg_perf, how='outer')
combined_perf = combined_perf.ffill()
if 'LinearTrendSTM' in combined_perf.columns and 'RollYieldBTG' in combined_perf.columns:
# 计算等权重组合净值 (简单示例)
combined_perf['EqualWeightPortfolio'] = (combined_perf['LinearTrendSTM'] / 2 + combined_perf['RollYieldBTG'] / 2)
# 如果需要从1开始的相对净值曲线
# combined_perf['EqualWeightPortfolio_Norm'] = combined_perf['EqualWeightPortfolio'] / initial_cash
print("\nCombined Performance DataFrame Head:")
print(combined_perf.head())
print("\nCombined Performance DataFrame Tail:")
print(combined_perf.tail())
# 绘制净值曲线
plt.figure(figsize=(12, 8))
if 'LinearTrendSTM' in combined_perf.columns:
plt.plot(combined_perf.index, combined_perf['LinearTrendSTM'], label='Linear Trend (STM)')
if 'RollYieldBTG' in combined_perf.columns:
plt.plot(combined_perf.index, combined_perf['RollYieldBTG'], label='Roll Yield (BTG Simplified)')
if 'EqualWeightPortfolio' in combined_perf.columns:
plt.plot(combined_perf.index, combined_perf['EqualWeightPortfolio'], label='Equal Weight Portfolio', linewidth=2)
plt.title('Strategy Performance Comparison')
plt.xlabel('Date')
plt.ylabel('Portfolio Value')
plt.legend()
plt.grid(True)
plt.show()
- 2.5 代码实现的局限性与扩展
- 数据质量: 示例使用的是模拟数据。真实期货回测需要高质量的连续合约数据(处理展期、复权)或多合约数据,以及Tick/快照数据(用于VwapLim等因子)。
- BTG因子简化: 示例中的展期策略是极大简化的,未实现报告中跨品种排序的逻辑。实现完整的BTG需要更复杂的数据处理和策略框架。
- VwapLim因子缺失: VwapLim因子需要高频数据,在日线回测框架中难以实现。
- 参数优化与鲁棒性: 示例使用了固定参数,实际应用需要进行参数优化和敏感性测试,并关注过拟合风险。
- 资金管理与风控: 示例中的仓位管理非常简化。实际CTA策略包含复杂的资金管理(如固定分数、固定风险比例)和风险控制模块(如止损、组合风险约束)。
- 交易成本: 仅包含了简单的手续费,未考虑滑点、冲击成本等。
- Markowitz优化: 未实现基于回测结果的Markowitz组合优化,这需要在获取各策略收益率序列后,使用
scipy.optimize
或PyPortfolioOpt
等库进行计算。 - 策略逻辑细节: 报告中的因子计算和交易逻辑细节(如具体阈值、过滤条件、开平仓逻辑)可能未完全复现,需要更深入的研究。
这个总结和代码示例提供了一个理解报告内容和基本策略实现框架的起点。要构建真正可用的CTA策略,还需要在数据、因子细节、风控和组合优化等方面进行大量深入的工作。