import pandas as pd
import pandas as pd import numpy as np
pandas中主要有两种数据结构,分别是:Series和DataFrame。
(1)Series:一种类似于一维数组的对象,是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据也可产生简单的Series对象。注意:Series中的索引值是可以重复的。
(2)DataFrame:一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型等),DataFrame即有行索引也有列索引,可以被看做是由Series组成的字典。
1、series 的创建
(1)Series:通过一维数组创建
(2)Series:通过字典的方式创建
(3)修改索引值
# series 的创建:数组方式 arr=np.array([1,3,5,np.NaN,10]) ser1=pd.Series(arr) print(ser1) # 获取series的元素的数据类型 print(ser1.dtype) # 获取series的索引 print(ser1.index) # 获取series的值 print(ser1.values)
# 通过index修改索引值,且索引值可以重复 ser2=pd.Series([98,99,90]) ser2.index=['语文','数学','语文'] print(ser2) ser3=pd.Series(data=[99,98,97],dtype=np.float64,index=['语文','数学',