pandas 中的Series

本文详细介绍了pandas库中的核心数据结构Series,包括其创建、值的获取、运算、缺失值检测、自动对齐以及name属性。Series可以视为一维数组,支持多种创建方式和索引操作,并且在运算时能自动对齐不同索引。此外,通过isnull和notnull函数可以检查缺失值,而name属性允许为Series和索引赋予名称。
摘要由CSDN通过智能技术生成



import pandas as pd
import pandas as pd
import numpy as np
pandas中主要有两种数据结构,分别是:Series和DataFrame。

(1)Series:一种类似于一维数组的对象,是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据也可产生简单的Series对象。注意:Series中的索引值是可以重复的。

(2)DataFrame:一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型等),DataFrame即有行索引也有列索引,可以被看做是由Series组成的字典。

1、series 的创建

(1)Series:通过一维数组创建

(2)Series:通过字典的方式创建

(3)修改索引值

# series 的创建:数组方式
arr=np.array([1,3,5,np.NaN,10])
ser1=pd.Series(arr)
print(ser1)
# 获取series的元素的数据类型
print(ser1.dtype)
# 获取series的索引
print(ser1.index)
# 获取series的值
print(ser1.values)
0     1.0
1     3.0
2     5.0
3     NaN
4    10.0
dtype: float64
float64
RangeIndex(start=0, stop=5, step=1)
[  1.   3.   5.  nan  10.]
# 通过index修改索引值,且索引值可以重复
ser2=pd.Series([98,99,90])
ser2.index=['语文','数学','语文']
print(ser2)
ser3=pd.Series(data=[99,98,97],dtype=np.float64,index=['语文','数学',
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值