pandas 中的Series




import pandas as pd
import pandas as pd
import numpy as np
pandas中主要有两种数据结构,分别是:Series和DataFrame。

(1)Series:一种类似于一维数组的对象,是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据也可产生简单的Series对象。注意:Series中的索引值是可以重复的。

(2)DataFrame:一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型等),DataFrame即有行索引也有列索引,可以被看做是由Series组成的字典。

1、series 的创建

(1)Series:通过一维数组创建

(2)Series:通过字典的方式创建

(3)修改索引值

# series 的创建:数组方式
arr=np.array([1,3,5,np.NaN,10])
ser1=pd.Series(arr)
print(ser1)
# 获取series的元素的数据类型
print(ser1.dtype)
# 获取series的索引
print(ser1.index)
# 获取series的值
print(ser1.values)
0     1.0
1     3.0
2     5.0
3     NaN
4    10.0
dtype: float64
float64
RangeIndex(start=0, stop=5, step=1)
[  1.   3.   5.  nan  10.]
# 通过index修改索引值,且索引值可以重复
ser2=pd.Series([98,99,90])
ser2.index=['语文','数学','语文']
print(ser2)
ser3=pd.Series(data=[99,98,97],dtype=np.float64,index=['语文','数学',
  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值