checkpoint 保存路径
model_path下存有包含多个迭代次数的模型
1.获取最新保存的模型
即上图中的model-9400
import tensorflow as tf
graph=tf.get_default_graph() # 获取当前图
sess=tf.Session()
sess.run(tf.global_variables_initializer())
checkpoint_file=tf.train.latest_checkpoint(model_path)
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess,checkpoint_file)
2.获取某个迭代次数的模型
比如上图中的model-9200
import tensorflow as tf
graph=tf.get_default_graph() # 获取当前图
sess=tf.Session()
sess.run(tf.global_variables_initializer())
checkpoint_file=os.path.join(model_path,'model-9200')
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess,checkpoint_file)
获取变量值
## 得到当前图中所有变量的名称
tensor_name_list=[tensor.name for tensor in graph.as_graph_def().node]
# 查看所有变量
print(tensor_name_list)
# 获取input_x和input_y的变量值
input_x = graph.get_operation_by_name("input_x").outputs[0]
input_y = graph.get_operation_by_name("input_y").outputs[0]