题目1——链表中的结点每k个一组翻转
将给出的链表中的结点每k个一组反转,返回翻转后的链表,如果链表中的结点数不是k的倍数,将最后剩下的结点保持原样,不能更改结点中的值,只能更改结点本身。
要求:空间复杂度O(1),时间复杂度O(n)。
示例
输入:{1,2,3,4,5}, 2
输出:{2,1,4,3,5}
解题思路
首先可以遍历整个链表,计算出链表的长度;根据链表长度可求得需要反转区间的个数;然后针对每个区间,反转区间;最后连接剩余的结点,返回最终链表。
推荐使用递归,将k个结点分成一组,每次反转一组中的k个结点(如果不够k个结点,应直接返回这个分组的头结点;否则进行反转操作,反转后,原来的头结点变成尾结点),然后反转后的分组尾部应该接下一组的反转结果,这样递归反转。
代码实现
import java.util.*;
/*
* public class ListNode {
* int val;
* ListNode next = null;
* }
*/
public class Solution {
public ListNode reverseKGroup (ListNode head, int k) {
if(head == null || head.next == null || k==1)
return head;
ListNode pre = head;
ListNode cur = head.next;
ListNode temp = null;
ListNode res = new ListNode(0);
ListNode t = res;
ListNode dummy = res;
ListNode firstk = null;
int length = 0;
//计算链表的长度
while(head!= null){
length++;
head = head.next;
}
//循环对几个反转
for(int i=0;i<length/k;i++){
firstk = pre; //每个分组反转后的尾结点
//针对每个区间进行反转
for(int j=1;j<k;j++){
temp = cur.next;
cur.next = pre;
pre = cur;
cur = temp;
}
//与下一个分组衔接
t.next = pre;
t = firstk;
pre = cur;
if(cur != null)
cur = cur.next;
}
t.next = pre; //连接剩下的结点
return dummy.next;
}
}
import java.util.*;
/*
* public class ListNode {
* int val;
* ListNode next = null;
* }
*/
public class Solution {
public ListNode reverseKGroup (ListNode head, int k) {
ListNode tail = head;
ListNode pre = null;
ListNode cur = head;
ListNode temp = null;
for(int i=0;i<k;i++){
if(tail == null)
return head;
tail = tail.next;
}
while(cur != tail){
temp = cur.next;
cur.next = pre;
pre = cur;
cur = temp;
}
head.next = reverseKGroup(tail,k);
return pre;
}
}
题目2——判断是不是二叉搜索树
给定一个二叉树根结点,请你判断这棵树是不是二叉搜索树。
二叉搜索树具有以下性质:
若它的左子树不为空,则左子树上的所有结点的值均小于它的根结点的值;若它的右子树不为空,则右子树上所有结点的值均大于它的根结点的值;
它的左、右子树也分别为二叉搜索树。
示例
输入:{1,2,3}
输出:false
解题思路
利用递归,因为二叉搜索树的特性就是中序遍历是一个递增序列,所以我们可以利用中序遍历,只要当前的结点的值大于之前结点的值,那么就可以继续判断,否则直接返回false。
采用非递归方式,利用栈对树进行中序遍历,然后检查遍历的序列是否是递增的,具体做法如下:
- 首先判断树是否为空,不遍历空树;
- 准备一个数组记录中序遍历的结果;
- 准备一个辅助栈,从根结点开始,每次优先进入每棵子树的左边结点,将其不断加入到栈中;
- 到达最左后,开始访问结点,如果它还有右节点,则将右节点也加入到栈中,之后右子树的访问也是优先到最左;
- 遍历数组,依次比较相邻两个元素是否为递增顺序。
代码实现
//采用递归方式
import java.util.*;
/*
* public class TreeNode {
* int val = 0;
* TreeNode left = null;
* TreeNode right = null;
* public TreeNode(int val) {
* this.val = val;
* }
* }
*/
public class Solution {
int pre = Integer.MIN_VALUE;
public boolean isValidBST (TreeNode root) {
if(root == null)
return true;
//先进入左子树
if(!isValidBST(root.left))
return false;
//如果当前结点的值小于之前结点的值,直接返回false
if(root.val < pre)
return false;
pre = root.val; //否则,更新pre结点的值
return isValidBST(root.right);
}
}
//采用非递归方式
import java.util.*;
/*
* public class TreeNode {
* int val = 0;
* TreeNode left = null;
* TreeNode right = null;
* public TreeNode(int val) {
* this.val = val;
* }
* }
*/
public class Solution {
public boolean isValidBST (TreeNode root) {
if(root == null)
return true;
ArrayList<Integer> res = new ArrayList<Integer>();
Stack<TreeNode> st = new Stack<TreeNode>();
while(root != null || !st.empty()){
while(root != null){
st.push(root);
root = root.left;
}
TreeNode temp = st.pop();
res.add(temp.val);
if(temp.right!=null)
root = temp.right;
}
for(int i = 0;i<res.size()-1;i++){
if(res.get(i)>=res.get(i+1))
return false;
}
return true;
}
}