题目1——最长公共子串
给定两个字符串str1和str2,输出两个字符串的最长公共字串。题目保证str1和str2的最长公共字串存在且唯一。
要求: 空间复杂度 O(n^2),时间复杂度 O(n^2)。
示例
输入:“1AB2345CD”,“12345EF”
输出:“2345”
解题思路
利用动态规划,定义dp[i][j] 为str1的前 i 个字符和str2的前 j 个字符的最长公共子串长度,因为子串必须连续,所以状态方程应为
dp[i][j] = dp[i-1][j-1]+1,为了确定字串的范围,需要定义一个maxlen来记录最长公共字串的最大长度,同时需要定义一个index来记录公共子串的下标;如果找不到子串,返回”-1“。
代码实现
import java.util.*;
public class Solution {
public String LCS (String str1, String str2) {
if(str1 == null || str2 == null)
return "-1";
int m = str1.length();
int n = str2.length();
int maxlen = 0; //记录最长公共子串的长度
int index = 0;
int[][] dp = new int[m][n]; //记录以i下标结束的字符串和j下标结束的字符串的公共子串的长度
//初始化二维矩阵边界
if(str1.charAt(0) == str2.charAt(0)){
dp[0][0] = 1;
maxlen = 1;
}
for(int i=1;i<n;i++){
if(str1.charAt(0) == str2.charAt(i)){
dp[0][i] = 1;
maxlen = 1;
}
}
for(int i=1;i<m;i++){
if(str1.charAt(i) == str2.charAt(0)){
dp[i][0] = 1;
maxlen = 1;
}
}
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
//当两个字符相同时,更新dp
if(str1.charAt(i) == str2.charAt(j)){
dp[i][j] = dp[i-1][j-1]+1;
//若当前长度大于maxlen,则更新maxlen和当前公共字串的下标
if(maxlen <= dp[i][j]){
maxlen = dp[i][j];
index = i;
}
}
}
}
if(maxlen == 0)
return "-1";
return str1.substring(index-maxlen+1,index+1);
}
}
题目2——最长回文子串
对于一个长度为n的一个字符串A(仅包含数字,大小写英文字母),请设计一个高效算法,计算其中最长回文子串的长度。
要求:空间复杂度O(n),时间复杂度O(n^2)。
示例
输入:“ababc”
输出:3 (最长的回文子串为"aba")
解题思路
定义一个布尔类型的数组dp,dp[i][j]表示下标i到下标j的子串是否为回文字符串,如果是,则dp[i+1][j-1]也是回文字符串,由此可得,状态转移方程
dp[i][j] = true if (dp[i+1][j-1] && str[i] == str[j]。
代码实现
import java.util.*;
public class Solution {
public int getLongestPalindrome (String A) {
int n = A.length();
String ans = "";
boolean[][] dp = new boolean[n][n];
for(int k=0;k<n;++k){ //k是i与j之间的间隔
for(int i=0;i+k<n;++i){
int j = i+k;
//k=0,k=1都为边界情况
if(k==0){
dp[i][j]=true;
}else if(k==1){
dp[i][j] = (A.charAt(i) == A.charAt(j));
}else{
dp[i][j] = (A.charAt(i) == A.charAt(j) && dp[i+1][j-1]);
}
//如果[i:j]回文字符串,且大与现有回文字符串长度,进行更新
if(dp[i][j] && k+1>ans.length())
ans = A.substring(i,j+1);
}
}
return ans.length();
}
}
题目3——兑换零钱
给定数组arr,arr中所有的值都为正整数且不重复。每个值代表一种面值的货币,每种面值的货币可以使用任意张,再给定一个aim,代表要找的钱数,求组成aim的最少货币数。如果无解,请返回-1。
要求:时间复杂度O(n*aim),空间复杂度O(aim)。
示例
输入:[5,2,3], 20
输出:4
解题思路
重新回顾动态规划算法的基本思想:将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并将答案保存起来。
在这个问题中,可以用dp[i]表示要凑出 i 元钱需要的最小货币数,因为货币最小为1元,所以开始可以将每个元素设置为最大值aim+1,使得货币数不会超过aim。凑出 i 元的最小货币数应该为
dp[i] = min(dp[i],dp[i-arr[j]]+1).
代码实现
import java.util.*;
public class Solution {
public int minMoney (int[] arr, int aim) {
if(aim<1)
return 0;
int[] dp = new int[aim+1];
//填充数组最大值aim+1
Arrays.fill(dp,aim+1);
dp[0] = 0;
for(int i=1;i<=aim;i++){
//计算每种面值,取最小的货币数
for(int j=0;j<arr.length;j++){
if(arr[j]<=i){
dp[i] = Math.min(dp[i],dp[i-arr[j]]+1);
}
}
}
//如果最终答案大于aim,则表示无解
return dp[aim]>aim?-1:dp[aim];
}
}
本文详细解析了三个经典的动态规划问题:最长公共子串、最长回文子串及兑换零钱问题,通过实例展示了如何利用动态规划算法解决实际问题。
821

被折叠的 条评论
为什么被折叠?



