torch.linspace,unsqueeze()以及squeeze()函数用法 / torch.randn和torch.rand的区别

1. torch.linspace(start,end,steps=100,dtype) <线性间距向量>

作用是返回一个一维的tensor(张量),包含在区间start和end上均匀间隔的step个点,输出张量的长度由steps决定,其中dtype是返回的数据类型。

import torch
print(torch.linspace(-1,1,5))
输出结果为:tensor([-1.0000, -0.5000,  0.0000,  0.5000,  1.0000])

2. unsqueeze()函数

作用是在指定位置增加维度。

import torch
a=torch.arange(0,6)  #a是一维向量
b=a.reshape(2,3)     #b是二维向量
c=b.unsqueeze(1)     #c是三维向量,在b的第二维上增加一个维度
print(a)
print(b)    
print(c)
print(c.size())
输出结果为:
tensor([0, 1, 2, 3, 4, 5])
tensor([[0, 1, 2],
        [3, 4, 5]])
tensor([[[0, 1, 2]],
        [[3, 4, 5]]])
torch.Size([2, 1, 3])

a的维度为1x6
b的维度为2x3
c的维度为2x1x3

若想在倒数第二个维度增加一个维度,则c=b.unsqueeze(-1)

3. squeeze()函数

可去掉维度为1的维度。

import torch
a=torch.arange(0,6)  #a是一维向量
b=a.reshape(2,3)
c=b.unsqueeze(1)
print(c)
print(c.size())
d=c.squeeze(1)
print(d)
print(d.size())
输出结果为:
tensor([[[0, 1, 2]],
        [[3, 4, 5]]])
torch.Size([2, 1, 3])
tensor([[0, 1, 2],
        [3, 4, 5]])
torch.Size([2, 3])

4. torch.rand(*sizes, out=None) → Tensor

均匀分布

返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数。张量的形状由参数sizes定义。

  • 参数
  • sizes (int…) - 整数序列,定义了输出张量的形状
  • out (Tensor, optinal) - 结果张量
import torch
e = torch.rand(2, 3) # 同rand((2, 3))
e1 = torch.rand(3)
print(e)
print(e.size())
print(e1)
print(e1.size())
输出结果为:
tensor([[0.5202, 0.3955, 0.7335],
        [0.2064, 0.7310, 0.0490]])
torch.Size([2, 3])
tensor([0.9491, 0.7499, 0.0585])
torch.Size([3])

5. torch.randn(*sizes, out=None) → Tensor

标准正态分布

返回一个张量,包含了从标准正态分布(均值为0,方差为1,即高斯白噪声)中抽取的一组随机数。张量的形状由参数sizes定义。

  • 参数:

  • sizes (int…) - 整数序列,定义了输出张量的形状

  • out (Tensor, optinal) - 结果张量

import torch
f = torch.randn(2, 3)
f1 = torch.randn(3)
print(f)
print(f.size())
print(f1)
print(f1.size())
输出结果为:
tensor([[-0.8658,  1.9324, -1.8821],
        [ 0.2715, -0.2389,  2.2982]])
torch.Size([2, 3])
tensor([-0.4860,  0.5520, -0.4666])
torch.Size([3])

6. torch.normal(means, std, out=None) → → Tensor

离散正态分布

返回一个张量,包含了从指定均值means和标准差std的离散正态分布中抽取的一组随机数。
标准差std是一个张量,包含每个输出元素相关的正态分布标准差。

  • 参数
  • means (float, optional) - 均值
  • std (Tensor) - 标准差
  • out (Tensor) - 输出张量
import torch
torch.normal(mean=0.5, std=torch.arange(1., 6.))
输出结果为:
tensor([ 0.2444,  0.5445, -0.5246, -1.5175, -0.7741])
下面是使用 PyTorch 完成逻辑回归问题的代码: ```python import numpy as np import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt # 生成随机数据 np.random.seed(0) X = torch.from_numpy(np.random.randn(100, 2).astype(np.float32)) Y = torch.zeros((100,)) Y[X[:,0] + X[:,1] > 0] = 1 # 定义逻辑回归模型 class LogisticRegression(nn.Module): def __init__(self): super(LogisticRegression, self).__init__() self.linear = nn.Linear(2, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.linear(x) x = self.sigmoid(x) return x model = LogisticRegression() # 定义损失函数优化器 criterion = nn.BCELoss() optimizer = optim.SGD(model.parameters(), lr=0.1) # 训练模型 num_epochs = 1000 for epoch in range(num_epochs): optimizer.zero_grad() outputs = model(X) loss = criterion(outputs.squeeze(), Y) loss.backward() optimizer.step() if (epoch+1) % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 输出模型参数 print('Model parameters:') for name, param in model.named_parameters(): if param.requires_grad: print(name, param.data) # 可视化结果 plt.scatter(X[:,0], X[:,1], c=Y) x_min, x_max = X[:,0].min().item(), X[:,0].max().item() y_min, y_max = X[:,1].min().item(), X[:,1].max().item() xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, 100)) Z = model(torch.from_numpy(np.c_[xx.ravel(), yy.ravel()].astype(np.float32))).detach().numpy().reshape(xx.shape) plt.contour(xx, yy, Z, levels=[0.5], colors='r') plt.show() ``` 运行代码后,会输出每轮训练的损失函数值,最后输出模型参数,并可视化分类结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值