推荐之对比学习
文章平均质量分 92
只想做个咸鱼
主要从事推荐系统领域的学习,相关知识会陆续更新,尽情期待(在读研究生)
展开
-
AutoGCL: Automated Graph Contrastive Learning viaLearnable View Generators
采用了一组由自动增强策略编排的可学习图视图生成器,其中每个图视图生成器学习受输入条件制约的图的概率分布。原创 2023-02-16 20:20:22 · 696 阅读 · 0 评论 -
XSimGCL: Towards Extremely Simple GraphContrastive Learning for Recommendation 论文+代码解读
XSimGCL的推荐任务和对比任务在一个小批量中共享正向/反向传播,而不是拥有单独的管道。具体来说,SimGCL和XSimGCL都使用相同的输入:初始嵌入和邻接矩阵。不同之处在于SimGCL对比了所学的两种最终表示,使用不同的噪声并依赖于普通表示进行推荐,而XSimGCL对两个任务使用相同的扰动表示,并用跨层对比替换SimGCL中的最终层对比。原创 2022-09-23 17:12:34 · 2045 阅读 · 0 评论 -
SimGCL:Are Graph Augmentations Necessary? Simple GraphContrastive Learning for Recommendation 论文代码解读
开发了一种简单的无图增强的CL方法,以一种更直接的方式来调节表示分布的均匀性。通过在表示中加入有向随机噪声,进行不同的数据增强和对比,提出的方法显著提高了推荐能力原创 2022-09-22 21:41:00 · 2060 阅读 · 1 评论 -
NCL:Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning,代码解读
结构邻居: 通过高阶路径在结构上连接的节点考虑图结构上的用户-用户邻居,商品-商品邻居的对比关系语义邻居: 语义上相似的邻居,在图上可能不直接相邻。从节点表征出发,聚类后,节点与聚类中心构成对比关系原创 2022-09-21 16:48:11 · 1382 阅读 · 2 评论 -
SGL:Self-supervised Graph Learning for Recommendation论文
正对的辅助监督促进了同一节点的不同视图之间的一致性来进行预测,而负对的监督则加强了不同节点之间的差异原创 2022-09-21 20:44:39 · 1379 阅读 · 0 评论