摘要
在本文中,证明了通过图增强获得的节点嵌入是高度偏倚的,在一定程度上限制了对比模型从下游任务中学习判别特征。因此,他们不是研究输入空间中的图增强,而是建议对隐藏特征进行增强(特征增强)。受矩阵草图的启发,提出了一种新的协方差保持特征空间增强框架COSTA,该框架通过保持原始特征的“良好草图”来生成增强特征。为了突出特征增强与COSTA的优势,研究了一个单视图设置(除了多视图设置),它可以节省内存和计算。
一、介绍
近年来,CL已被应用于图域。典型的图对比学习(GCL)方法通过随机增强输入来构建多个图视图,通过对比正样本和负样本来学习表征。然而,图的不规则结构使图像增强技术的适应变得复杂,并且阻碍了基于视觉的对比学习的理论分析扩展到图。因此,许多工作都集中在图对比学习(即随机边/节点/属性下降)的手工图增强(GA)的经验设计上。值得注意的是,一些最新的研究指出,随机数据增强是有问题的,因为它们的噪声可能与下游任务无关。GCL在极其稀疏的GAs(边缘丢弃率为0.9)下实现了期望的性能增益,但方法在没有GAs的情况下也获得了类似的结果。这样的观察自然提出了一个问题:除了GA之外,还有更好的GCL增强策略吗?
为此,他们表明,与特征增强(FA)获得的嵌入相比,用GA获得的嵌入具有高度偏差,
1、(重点)引出的特征增强优势:

图1:节点嵌入在Cora上的分布是通过500x图增广生成的。a对应于特征增强(高斯噪声注入)。b对应于图增广(边置换和属性屏蔽)。使用二维嵌入来实现可视化。
(GA为例:首先在Cora上随机了一个节点 (Node),然后利用利用Graph Augmentation获得一个新的节点进行嵌(embedding),不断重复上述过程500次,绿色节点是对于一个节点进行500次增强后得到的嵌入分布,蓝色是这500节点的均值,红色是未经过特征增强的节点)
如图1a所示,FA得到的嵌入总体均值位于最密集的区域,并且靠近原始样本的嵌入(未增强)。相比之下ÿ

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



