数列与级数分析(第一章)

数列与级数分析(第一章)

哪吒三太子 2016/4/20 于上海卢湾

中国高校教材把数列与级数放在《高等数学》或《数学分析》的前几章学习是不合适的,在普通概念中自然数组成的数列与级数分析应比实数域上的函数极限分析简单,但事实上因为自然数的离散性质,其概念往往与直观相悖,引人深思。笔者在这里做一个关于数列与级数的简略小结来涵盖最重要的几个主干思想和分析方法。

1670年以前的人们遇到了下面的正确性判定问题:

Bernoulli 不等式:

(1+x1)(1+x2)(1+x3)(1+xn)1+x1+x2+x3++xn
xixi1

其他经典不等式:

n!(n+12)2

注:此不等式可看作“中值乘积最大假说”,是不等式 (k)(1k)12 的实数轴拓展


数学归纳法,应运而生

上面的问题可由数学归纳法解决。数归法的由来不属于“数学”,它的思想由来于逻辑推理的基本事实

若A正确,且A可推导至B,那么B也正确,只要满足此关系,相似可推导至C.D.E至无穷。

数学归纳法它可能是最早用来比较两个数列的分析方法,因为它的思想直观,所以很容易被接受并使用。
但数归法也仅仅是一个判定假设的正确性的工具��

后来人们遇到了求数列极限的问题:

limx[12n3+32n3+...+(2n1)2n3]

很可惜,由于各类极限方程的“千变万化”,除了用高超的数学技巧来解这些问题,似乎并没有什么其他更好的通用方法了。要先求出

f(n)=[12n3+22n3+...+(n1)2n3]

再利用
[12n3+32n3+...+(2n1)2n3]=8f(2n)4f(n)

的数列相减法来求极限。

上述可见,求数列的极限并非是件易事呐,首先你要知道 f(n) ,其次要洞彻上述问题数列与 f(n) 的关系,你才能得到最终的正确结果。而其中任何一项都需要敏锐的观察力和厚实的知识沉淀。

那当我们遇到任何数列,是否真的都能以高超的技巧来求解呢?答案是否定的,很遗憾; 因为并非所有数列都能求出解,数学的世界中有无穷多个数列都是发散的。

先验证数列极限是否存在(或者说收敛)?

每当我们拿到一个数列的时候,我们不能都妄图求解出它的极限,即使你是 Gauss 小王子附身,也不可能求出“不存在”的极限。那么问题就变成了如何判定极限存在与否?

事实上这个问题很早就被各大数学天才发现并试图解决; 求极限太费劲了,节约生命人人有责。

人们首先想到正数的“累和”最有可能趋向无穷

所以由此产生了 Cauchy,d’Alembert 比值判别法

an,bn
bnan+1anbn+1n,an

判定发散就是上述的逆。

d’Alembert 比值判别法 用等比数列比较

d’Alembert (1717-1783,法国����) 即使用 等比数列 1n 与 数列进行比较

limanan+1=q,q>1q<1q=1

随后 Cauchy 发明了著名的 Cauchy根式判别法拓展了 d’Alembert 比值判别法

Cauchy (1789-1857,法国����)
Cauchy根式判别法 主要是这样的:

n=1+an
ann<1,nN,
n,ann>1,

Cauchy 其实是使用了等比数列与 +n=1an 进行一一对比的方式来确定级数收敛问题,

anqn,q1
当然若等比数列 q=1 无定义,相同的 Cauchy根式判别法 也无定义。这是它算法上的 奇点

虽然 Cauchy 根式判别法已经足够好了,但是求根在复杂方程中很不方便,比如 (ab+3+3)3lna ,很难进行化简。所以在很多情况下比值判别法可能更好。

既然我们能用已知的等比数列和作为比较的尺度标准,那么我们也可以用其他已知的级数做比较咯?

随后Raabe 比值判别法 用更精细的尺度做比较拓展了 d’Alembert 比值判别法

Raabe (1801-1859, 瑞士����)

limn(anan+11)=q,q>1,q<1,q=1

可以看出 Raabe 在 d’Alembert 的基础上对数列进行了 (q1) 的余项与 n 进行第二次比值判别,更加精细。

最后 Gauss 沿用 Raabe 的思路进行第三次 d’Alembert 比值判别法拓展

Gauss (1777-1855, 德国����)

anan+1=λ+μn+vnlnn+o(1nlnn)

λ>1λ<1

λ=1μ>1μ<1

mu=1v>1v<1

下篇将继续介绍非正项也就是任意项级数的收敛判定问题。那你有可能就有疑问,既然任意项级数包含了正项级数,我们是否就可以“抛弃”上述判别法,而全部采用任意项级数判别法就好了? 由于任意项级数判别比正项级数判别法更高级,所以它也就更加复杂和抽象,我并不是说它不能用来判别正项级数,而是说:杀鸡不用牛刀,牛刀可以杀鸡,但很麻烦。这个道理是一样的。

评论 3 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

zhao_92221

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值