unit 代码(pytorch)

import torch

import torch.nn as nn

import torch.nn.functional as F

class DoubleConv(nn.Module):

    def __init__(self, in_channels, out_channels, mid_channels=None):

        super().init__()

        if not mid_channels:

            mid_channels = out_channels

        self.double_conv = nn.Sequential(

            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),

            nn.BatchNorm2d(mid_channels),

            nn.Relu(inplace=True),

            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),

            nn.BatchNorm2d(out_channels),

            nn.ReLU(inplace=True)

        )

    def forward(self, x):

        return self.double_conv(x)

   

class Down(nn.Module):

    def __init__(self, in_channels, out_channels):

        super().__init__()

        self.maxpool_conv = nn.Sequential(

            nn.MaxPool2d(2),

            DoubleConv(in_channels, out_channels)

        )

   

    def forward(self, x):

        return self.maxpool_conv(x)

   

class Up(nn.Module):

    def __init__(self, in_channels, out_channels, bilinear=True):

        super().__init__()

        if bilinear:

            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)

            self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)

        else:

            self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)

            self.conv = DoubleConv(in_channels, out_channels)

    def forward(self, x1, x2):

        x1 = self.up(x1)

        diffY = x2.size()[2] - x1.size()[2]

        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,

                        diffY // 2, diffY - diffY //2])

        x = torch.cat([x2, x1], dim=1)

        return self.conv(x)

   

class OutConv(nn.Module):

    def __init__(self, in_channels, out_channels):

        super().__init__()

        self.conv = nn.Conv2d(in_channels, out_channels=out_channels, kernel_size=1)

    def forward(self, x):

        return self.conv(x)

   

class UNet(nn.Module):

    def __init__(self, args, n_channels, n_classes, bilinear=True):

        super().__init__()

        self.n_channels = n_channels

        self.n_classes = n_classes

        self.bilinear = bilinear

        self.inc = DoubleConv(n_channels, 64)

        self.down1 = Down(64, 128)

        self.down2 = Down(128, 256)

        self.down3 = Down(256, 512)

        factor = 2 if bilinear else 1

        self.down4 = Down(512, 1024 // factor)

        self.up1 = Up(1024, 512 // factor, bilinear)

        self.up2 = Up(512, 256 // factor, bilinear)

        self.up3 = Up(256, 128 // factor, bilinear)

        self.up4 = Up(128, 64, bilinear)

        self.outc = OutConv(64, n_classes)

    def forward(self, x):

        x1 = self.inc(x)

        x2 = self.down1(x1)

        x3 = self.down2(x2)

        x4 = self.down3(x3)

        x5 = self.down4(x4)

        x = self.up1(x5, x4)

        x = self.up2(x, x3)

        x = self.up3(x, x2)

        x = self.up4(x, x1)

        logits = self.outc(x)

        return logits



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值