《Neural Networks and Deep Learning》第一周学习笔记

这篇博客介绍了深度学习的基础,包括神经网络的概念,以房价预测为例阐述其工作原理。文章强调了监督学习在神经网络中的应用,并列举了不同类型的神经网络结构,如全连接网络和卷积网络。此外,讨论了深度学习为何在大数据场景下优于传统机器学习,特别是ReLU激活函数如何解决sigmoid函数的梯度消失问题,加速了训练过程。同时指出,训练神经网络是一个迭代过程,需要不断调整参数以优化性能。
摘要由CSDN通过智能技术生成

《Neural Networks and Deep Learning》第一周学习笔

深度学习介绍

1 什么是神经网络

以房价预测为例:根据房价的相关影响因素(卧室数量、面积大小、邮政编码-便利程度、位置-富裕程度)预测房价
y(房价)=neuron(x:影响因素)
选择RELU函数拟合
o
o o
o
神经网络模型只需要一大批的输出和输出数据,就可以训练模型,由输入层、隐藏层和输出层构成,上述方法也成为监督学习,已知y分成几类的情况

2 监督神经网络

课程介绍了神经网络常用的输入输出和应用实例,如房价预测、图片识别、语音识别。
神经网络示例:
标准神经网络(全连接)、卷积神经网络(图片识别)、循环神经网络(一维序列化数据)
数据常分为结构数据和非结构数据
结构数据:有固定的数据格式,数据库中存储
非结构化数据:图片、文本和音频,深度学习擅长处理非结构化数据

3 深度学习为什么有效

坐标轴中横坐标为数据,纵坐标为表现,当数据量很小时,深度学习和传统的机器学习算法效果基本一致,随着数据量的逐渐增大,深度学习算法效果远超过传统机器学习方法,更大规模的神经网络表现更好
课程中的常用符号为
x-输入
y-输出
m-训练集大小

深度学习崛起的主要因素:数据、计算力和算法创新-目的是加快神经网络的计算

神经网络的一个重大突破-激活函数为例,从之前的sigmoid到RELU
sigmoid的正无穷和负无穷处,梯度几乎为0,神经网络的学习进度会非常慢
RELU的在x<0是为0,x>0时梯度处处为1,极大的提高了算法计算速度,可节省时间训练更大的神经网络
不理解问题但是RELU的在x<0是为0???
快速训练神经网络的另一个原因是训练神经网络的过程是个循环,需要不断根据网络效果修改参数重新调试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值