7.判别分析:从已知的各种分类情况中总结规律(训练出判别函数),当新样品进入时,判断其与判别函数之间的相似程度(概率最大,距离最近,离差最小等判别准则)。
9.时间序列分析:时间序列分析则侧重研究数据序列的互相依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。例如,记录了某地区第一个月,第二个月,……,第N个月的降雨量,利用时间序列分析方法,可以对未来各月的雨量进行预报。
10.决策树(Decision Tree):是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。
二、营销管理方法论:
1.SWOT分析:
Strength:优势
Opportunity:机会
Weakness:劣势
Threat:威胁
2.4P分析:
Product(产品)、Price(价格)、Promotion(促销)、Placre(渠道)
3.PEST分析:宏观环境分析
Politics(政治)、Economy(经济)、Society(社会)、Technology(技术)
4.SMART分析:
Specific(明确性)、Measurable(可量化)、Attainable(可实现)、Relevant(相关联)、Time(时效性)
5.5W2H分析:
WHAT(是什么?目的是什么?做什么工作?)、WHY(为什么要做?可不可以不做?有没有替代方案?)、WHO(谁?由谁来做?)、WHEN(何时?什么时间做?什么时机最适宜?)、WHERE(何处?在哪里做?)、HOW( 怎么做?如何提高效率?如何实施?方法是什么?)、HOW MUCH(多少?做到什么程度?数量如何?质量水平如何?费用产出如何?)
6.User behavior分析:
用户行为轨迹:认知、熟悉、试用、使用、忠诚;
用户的网站行为:网站访问、网站浏览、站内搜索、用户注册、用户登陆、
用户订购、用户黏性、用户流失
7.1、最大似然法:用于自变量均为分类变量的情况,该方法建立在独立事件概率乘法定理的基础上,根据训练样品信息求得自变量各种组合情况下样品被封为任何一类的概率。当新样品进入是,则计算它被分到每一类中去的条件概率(似然值),概率最大的那一类就是最终评定的归类。
7.2、距离判别:其基本思想是由训练样品得出每个分类的重心坐标,然后对新样品求出它们离各个类别重心的距离远近,从而归入离得最近的类。也就是根据个案离母体远近进行判别。最常用的距离是马氏距离,偶尔也采用欧式距离。距离判别的特点是直观、简单,适合于对自变量均为连续变量的情况下进行分类,且它对变量的分布类型无严格要求,特别是并不严格要求总体协方差阵相等。7.3、Fisher判别:亦称典则判别,是根据线性Fisher函数值进行判别,通常用于梁祝判别问题,使用此准则要求各组变量的均值有显著性差异。该方法的基本思想是投影,即将原来在R维空间的自变量组合投影到维度较低的D维空间去,然后在D维空间中再进行分类。投影的原则是使得每一类的差异尽可能小,而不同类间投影的离差尽可能大。Fisher判别的优势在于对分布、方差等都没有任何限制,应用范围比较广。另外,用该判别方法建立的判别方差可以直接用手工计算的方法进行新样品的判别,这在许多时候是非常方便的。
7.4、Bayes判别:许多时候用户对各类别的比例分布情况有一定的先验信息,也就是用样本所属分类的先验概率进行分析。比如客户对投递广告的反应绝大多数都是无回音,如果进行判别,自然也应当是无回音的居多。此时,Bayes判别恰好适用。Bayes判别就是根据总体的先验概率,使误判的平均损失达到最小而进行的判别。其最大优势是可以用于多组判别问题。但是适用此方法必须满足三个假设条件,即各种变量必须服从多元正态分布、各组协方差矩阵必须相等、各组变量均值均有显著性差异。8.主成分与因子分析:
8.1、主成分分析基本原理:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个综合指标(主成分),即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的。
8.2、因子分析基本原理:利用降维的思想,由研究原始变量相关矩阵内部的依赖关系出发,将变量表示成为各因子的线性组合,从而把一些具有错综复杂关系的变量归结为少数几个综合因子。(因子分析是主成分的推广,相对于主成分分析,更倾向于描述原始变量之间的相关关系)。9.时间序列分析:时间序列分析则侧重研究数据序列的互相依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。例如,记录了某地区第一个月,第二个月,……,第N个月的降雨量,利用时间序列分析方法,可以对未来各月的雨量进行预报。
10.决策树(Decision Tree):是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。
二、营销管理方法论:
1.SWOT分析:
Strength:优势
Opportunity:机会
Weakness:劣势
Threat:威胁
2.4P分析:
Product(产品)、Price(价格)、Promotion(促销)、Placre(渠道)
3.PEST分析:宏观环境分析
Politics(政治)、Economy(经济)、Society(社会)、Technology(技术)
4.SMART分析:
Specific(明确性)、Measurable(可量化)、Attainable(可实现)、Relevant(相关联)、Time(时效性)
5.5W2H分析:
WHAT(是什么?目的是什么?做什么工作?)、WHY(为什么要做?可不可以不做?有没有替代方案?)、WHO(谁?由谁来做?)、WHEN(何时?什么时间做?什么时机最适宜?)、WHERE(何处?在哪里做?)、HOW( 怎么做?如何提高效率?如何实施?方法是什么?)、HOW MUCH(多少?做到什么程度?数量如何?质量水平如何?费用产出如何?)
6.User behavior分析:
用户行为轨迹:认知、熟悉、试用、使用、忠诚;
用户的网站行为:网站访问、网站浏览、站内搜索、用户注册、用户登陆、
用户订购、用户黏性、用户流失