应用DeepSORT实现目标跟踪

本文介绍了如何在Python中应用DeepSORT算法进行目标跟踪,包括安装必要的库、设置参数以及使用YOLOv8作为目标检测器的完整示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在ByteTrack被提出之前,可以说DeepSORT是最好的目标跟踪算法之一。本文,我们就来应用这个算法实现目标跟踪。

DeepSORT的官方网址是https://github.com/nwojke/deep_sort。但在这里,我们不使用官方的代码,而使用第三方代码,其网址为https://github.com/levan92/deep_sort_realtime。

下面我们就来应用DeepSORT。首先在虚拟环境内安装必要的软件包:

conda install python=3.8
pip install deep-sort-realtime

可以看出,DeepSORT算法只是需要几个常规的软件包:numpy、scipy和opencv-python,对用户十分友好。

使用DeepSORT也很方便,先导入DeepSORT:

from deep_sort_realtime.deepsort_tracker import DeepSort

实例化:

tracker = DeepSort()

DeepSort有一些输入参数,在这里只介绍几个常用的参数:

max_iou_distance:IoU的门控阈值,大于该值的关联会被忽略,默认值为0.7

max_age:当遗漏次数大于该值时轨迹会被删除,默认值为30

n_init:在初始阶段轨迹被保留的帧数,默认值为3

nms_max_overlap:非最大值抑制阈值,如果该值为1.0,表示不使用非最大值抑制,默认值为1.0

max_cosine_distance:余弦距离阈值,默认值为0.2

nn_budget:外观描述符的最大尺寸(int类型),如果为None,则不强制执行,默认值为None

实现目标跟踪:

tracks = tracker.update_tracks(bbs, frame=frame)

bbs为目标检测器的结果列表,每个结果是一个元组,形式为([left,top,w,h],置信值,类型),其中类型为字符串型

frame为帧图像

输出tracks为目标跟踪结果,使用for循环可以得到各个目标的跟踪信息:

for track in tracks:

下面介绍一些track的常用属性和方法:

track_id:目标ID

orginal_ltwh、det_conf、det_class:分别表示目标边框信息、置信值和类型,这三个值都是由tracker.update_tracks传入系统的原始目标的信息,但此时已匹配上了目标ID

to_ltrb()和to_ltwh():得到目标边框信息,两者的形式不同

is_confirmed():表示如果该目标ID被确认,则返回True

下面我们就给出DeepSORT实现目标跟踪的完整程序,在这里,我们仍然使用YOLOv8作为目标检测器:

import numpy as np
import cv2
from ultralytics import YOLO
from deep_sort_realtime.deepsort_tracker import DeepSort

model = YOLO('yolov8l.pt')

cap = cv2.VideoCapture("D:/track/Highway Traffic.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
fNUMS = cap.get(cv2.CAP_PROP_FRAME_COUNT)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
videoWriter = cv2.VideoWriter("D:/track/mytrack.mp4", fourcc, fps, size)

tracker = DeepSort(max_age=5)

def box_label(image, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
    p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
    cv2.rectangle(image, p1, p2, color, thickness=1, lineType=cv2.LINE_AA)
    if label:
        w, h = cv2.getTextSize(label, 0, fontScale=2 / 3, thickness=1)[0]  
        outside = p1[1] - h >= 3
        p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
        cv2.rectangle(image, p1, p2, color, -1, cv2.LINE_AA)
        cv2.putText(image,
                label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
                0, 2/3, txt_color, thickness=1, lineType=cv2.LINE_AA)

while cap.isOpened():
    success, frame = cap.read()
 
    if success: 
        results = model(frame,conf=0.4)
        outputs = results[0].boxes.data.cpu().numpy()
        
        detections = []
        
        if outputs is not None:
            for output in outputs:
                x1, y1, x2, y2 = list(map(int, output[:4]))
                if output[5] == 2:
                    detections.append(([x1, y1, int(x2-x1), int(y2-y1)], output[4], 'car'))
                elif output[5] == 5:
                    detections.append(([x1, y1, int(x2-x1), int(y2-y1)], output[4], 'bus'))
                elif output[5] == 7:
                    detections.append(([x1, y1, int(x2-x1), int(y2-y1)], output[4], 'truck'))

            tracks = tracker.update_tracks(detections, frame=frame)
 
            for track in tracks:
                if not track.is_confirmed():
                    continue
                track_id = track.track_id
                bbox = track.to_ltrb()
                
                box_label(frame, bbox, '#'+str(int(track_id))+ track.det_class , (167, 146, 11))
                        
        cv2.putText(frame, "https://blog.csdn.net/zhaocj", (25, 50),
                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
      
        cv2.imshow("YOLOv8 Tracking", frame)
        videoWriter.write(frame)
     
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
 
    else:
        break

cap.release()
videoWriter.release()
cv2.destroyAllWindows()

### 解决 DeepSort 及其实时版本运行问题 #### 一、环境配置确认 确保 Python 版本兼容,推荐使用 Python 3.8 或以上版本。安装必要的依赖库,如 NumPy, PyTorch 等。对于 `deep_sort_realtime` 库,建议通过 pip 安装最新稳定版[^1]。 ```bash pip install git+https://gitcode.com/gh_mirrors/de/deep_sort_realtime.git@main ``` #### 二、数据预处理调整 DeepSort 需要输入特定格式的数据集用于训练或推理阶段。如果遇到读取图片失败等问题,则需验证路径设置是否正确,并检查图像尺寸是否满足模型需求[^2]。 #### 三、模型加载优化 当尝试加载预训练权重文件时可能出现错误。此时应先确认所使用的权重量级与代码仓库中的说明一致;其次考虑网络连接状况不佳导致下载中断的情况,可以手动获取官方提供的预训练模型并存放在指定位置[^4]。 #### 四、性能调优技巧 为了提高程序执行效率,可适当降低检测频率或将部分计算任务卸载至 GPU 上完成。另外,合理设定最大追踪时间窗口大小也能有效减少内存占用和提升响应速度。 #### 五、常见报错排查指南 - **AttributeError**: 若提示找不到某些属性方法,可能是由于 API 更新引起接口变化所致,参照项目文档更新相应函数调用方式; - **CUDA out of memory**: 减少批量处理规模或是关闭不必要的可视化组件来释放显卡资源; - **IndexError / KeyError**: 数据索引越界通常是因为输入不符合预期格式造成的,仔细核对输入参数合法性。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值